Классификация углеводов.

Углеводы


Моносахариды Дисахариды Полисахариды

Глюкоза Сахароза Целлюлоза

Фруктоза Мальтоза Крахмал

Рибоза Лактоза Гликоген

Дезоксирибоза

I . Моносахариды – простые углеводы, с формулой ( O) n .

В зависимости от количества атомов углерода в молекуле моносахариды называются триозами (3 атома), тетрозами (4 атома); пентозами (5 атомов) – рибоза, дезоксирибоза; и гексозами (6 атомов С) – глюкоза, фруктоза, галактоза.

Глюкоза содержится в крови (0,1-0,12%) и служит основным источником энергии для клеток и тканей организма. Рибоза и дезоксирибоза входят в состав нуклеиновых кислот и АТФ.

II. Дисахариды (олигосахариды) – сахара, образующиеся в результате объединения двух моносахаридов (гексоз), с потерей молекулы воды.

Наиболее важными из этой группы являются: сахароза (свекловичный сахар) и мальтоза (солодовый сахар) у растений, и лактоза – у животных (молочный сахар).

К дисахаридам относится пищевой сахар, получаемый из тростника свеклы. Он состоит из1 молекулы глюкозы и 1 молекулы фруктозы.

Моносахариды и дисахариды хорошо растворимы в воде, обладают сладким вкусом.

III. Полисахариды – сложные углеводы, образованные многими моносахаридами.

Общая формула ()n. Наибольшее биологическое значение имеют: крахмал, гликоген, целлюлоза, хитин. Полисахариды биополимеры, нерастворимы в воде, не имеют сладкого вкуса.

Кроме полисахаридов, состоящих из гексоз, существуют значительно более сложные длинные молекулы, содержащие аминный N (например: глюкозамин), который может быть ацетилирован (ацетилглюкозамин) или замещен на остатки серной или фосфорной кислоты.

Эти сложные полисахариды представляют следующие соединения:

ü нейтральные полисахариды , содержащие только ацетилглюкозамин. Пример: хитин – опорное вещество насекомых и ракообразных.

ü кислые мукополисахариды , содержащие в молекулах остатки серной и др. кислот. Пример: гепарин.

ü мукопротеиды (мукоиды) и гликопротеиды, представляют собой комплексы ацетилглюкозамина и др. углеводов с белками. Пример: вещества входящие в состав слюны и секрета слизистой желудка, также к гликопротеидам относятся яичный и сывороточный альбумины.

Свойства и функции углеводов:

1. Строительная (структурная) –

ü входят в состав оболочек растительных клеток (целлюлоза образует стенки растительных клеток) и формируют опорный скелет растений;

ü хитин – главный структурный компонент наружного скелета членистоногих. Строительную функцию хитин выполняет и у грибов.

2. Энергетическая функция (запасающая) –

ü углеводы являются основным источником энергии в клетках. При окислении 1 г глюкозы выделяет 17,6 кДж энергии;

ü крахмал является основным запасным веществом у растений, гликоген – у животных; служат энергетическим резервом.

Липиды.

Липиды – это сложные эфиры, образующиеся в результате реакции конденсации между жирными кислотами и каким-нибудь спиртом.

Реакция конденсации – это реакция, при которой происходит соединение двух веществ с выделением молекулы воды.

Липиды иногда называют жирами и жироподобные органические соединения, которые наряду с белками и углеводами обязательно присутствуют в клетках. Все они являются гидрофобными соединениями, т.е. нерастворимые в воде, но растворимы в неполярных органических растворителях (хлороформ, бензол, эфир, бензин, ацетон и др.)

Поступление липидов в клетку:

ü у растений синтезируются в каналах ЭПС.

ü у животных поступают с пищей, расщепляются и вновь синтезируются в собственные жиры.

Рис. Строение простого липида

Жир содержится в молоке всех млекопитающих животных, у некоторых до 40% (у самки дельфина). У некоторых растений большое количество жира находится в семенах и плодах (подсолнечник, грецкий орех).

Рис. Строение олеиновой кислоты

Липиды не являются полимерами , т.к. они не состоят из повторяющихся звеньев (мономеров).

Компоненты липидов.

Жирные кислоты называют «жирными» потому, что некоторые члены этого ряда входят в состав жиров. Общая формула имеет вид R-СООН, где R – атом водорода или радикал типа – СН 3 , –С 2 Н 5 и др.

Длинная цепь из атомов углерода и водорода составляет гидрофобный углеводородный хвост .

Иногда в жирных кислотах имеется одна или несколько двойных связей (С = С). В этом случае жирные кислоты называются ненасыщенными . Если двойных связей нет, кислоты называются насыщенными .

Ненасыщенные жирные кислоты плавятся при низких температурах. Олеиновая кислота – основной компонент оливкового масла – при обычных температурах бывает жидкой (Т пл = 13,4 о С), тогда как пальмитиновая и стеариновая кислоты (Т пл = 63,1 о С и Т пл = 69,6 о С) при таких температурах остаются твердыми.

Спирты. Большая часть липидов представляет собой триглицериды. В их состав входит спирт глицерол.

Кроме жира, в клетках присутствуют вещества, обладающие, как и жиры, гидрофобными свойствами. Это – липоиды.

Липоиды (греч. «липос» - жир, «эйдос» - вид) – жироподобные вещества, у которых 1 молекула жирной кислоты заменена на .

Классификация липидов

Эфиры жирных кислот и глицерина Стероиды

(входит спирт холестерол)

Простые Сложные

Триглицериды Воска Фосфолипиды

Гликолипиды

Триглицериды – самые распространённые из липидов, встречающихся в природе. Их принято делить на жиры и масла, в зависимости от того, остаются ли они твердыми при комнатной температуре (жиры) или находятся в жидком состояние (масла). Температура плавления липида тем ниже, чем выше в нем доля ненасыщенных жирных кислот.

В организме животных, живущих в холодном климате, например у рыб арктических морей, обычно содержится больше ненасыщенных триацилглицералов, чем у обитателей южных широт. Поэтому тело их остается гибким и при понижении температуры среды.

Воска – сложные эфиры жирных кислот и многоатомных спиртов. Кожные железы животных способны вырабатывать воска, предохраняющие шерсть и перья от намокания. Пчелы строят соты из воска. У растений воска образуют защитный слой на поверхности плодов и листьев.

Фосфолипиды – соединения глицерина, жирных кислот и остатка фосфорной кислоты.


Рис. Строение фосфолипида.

Фосфатная голова – гидрофильна. Хвост не растворим в воде.

Гликолипиды – соединения липидов и углеводов. Гликолипиды и фосфолипиды входят в состав мембран.

Стероиды не содержат жирных кислот, и имеют в своем составе спирт холестерол.

К этой группе липидов (стеролы)относятся желчные кислоты, гормоны коры надпочечников (адренокортикотропные гормоны), половые гормоны, витамин D. Предшественником в синтезе этих веществ является холестерин. Как структурный компонент он входит в состав всех мембран.

К стеролам близки терпены, представителями которых являются гибереллины (ростовые вещества растений), каротиноиды (пигменты*), ментол и камфора (эфирные масла растений).

*Пигменты – разнообразные по химической структуре органические вещества, способные избирательно поглощать свет определенной длины волны.

ü Красящая: придают окраску клеткам тканей и органов (антоцианы у растений, меланин у животных).

ü Защита от ультрафиолета (каротиноиды у растений, меланин у животных).

ü Участие в фотосинтезе (хлорофилл и фикобиллины).

ü Транспорт и депонирование кислорода (гемоглобин крови и миоглобин мышц).

ü Участие в зрительном поцессе (родопсин и йодопсин).

Свойства и функции липидов:

1. Энергетическая функция. Липиды обеспечивают 25-30% всей энергии, необходимой организму. При расщеплении 1г. жиров до и освобождается 38,9 кДж энергии.

2. Запасающая функция. Запасными питательными веществами могут быть капли жира вне клетки. Накапливаясь в клетках жировой ткани животных, в семенах и плодах растений, жиры служат запасным источником энергии.

Пример: животные, впадающие в спячку, и растения накапливающие жиры и масла и расходуют их в процессе жизнедеятельности.

3. Строительная функция (структурная) – липиды образуют бимолекулярный слой служащий основой наружной клеточной мембраны, из них 75-95% фосфлипиды; гликолипиды входят в состав клеток мозга и нервных клеток.

4. Функция термоизоляции. Жиры плохо проводят тепло. У некоторых животных (тюлени, киты) он откладывается в подкожной жировой ткани, которая у китов образует слой толщиной до 1 м.

5. Защитная функция: термо- и гидроизоляция, защита от ударов. Пример: воск предохраняет перья и шерсть животных от смачивания.

6. Регуляторная функция (гормональная)

ü связана с тем, что многие жиры – компоненты витаминов (А, Д, Е и К) следовательно часть липидов принимают участие в обмене веществ.

ü Стероидные гормоны регулируют ряд процессов обмена веществ и размножения.

7. Функция источника воды.

ü При окислении 100 г жира образуется ≈105 г воды. Эта метаболическая вода очень важна для обитателей пустыни, в частности для верблюда, способного обходится без воды 10-12 дней; жир запасаемый в его горбе, используется для этой цели.

ü Необходимую для жизнедеятельности воду медведи, сурки и др. животные в спячке также получают в результате окисления жира.

Белки.

Белки – сложные органические соединения (биополимеры), состоящие из С, Н, О и N (иногда и S), мономерами которых являются аминокислоты.

Белки высокомолекулярны.

Молекулярная масса (Mm) = от 5 тыс. до 1 млн. дальтон и более. Так например: Mm этилового спирта = 46 Д; Mm одного из белков яйца = 36000 Д; Mm одного из белков мышц = 1500000 Д. Глобулин молока имеет Mm 42000 Д. Его формула –

Поступление белков в клетку:

ü у растений синтезируется на рибосомах из аминокислот которые образуются в клетках, из и карбоксильной группы, соединенных с различными радикалами.

ü у животных поступают с пищей, расщепляются до аминокислот, которые идут на синтез собственных белков.

В образовании белков участвуют 20 различных аминокислот.

Аминокислоты – низкомолекулярные органические соединения, в состав которых входят 1 или 2 аминогруппы (- ) и 1 или 2 карбоксильные группы (-COOH), обладающие щелочными (основными) и кислотными свойствами соответственно. Этим объясняются амфотерные свойства аминокислот, благодаря чему в клетках они играют роль буферных соединений.

Классификация аминокислот:

1) Моноаминомонокарбоновые: Глицин (Гли), Аланин (Ала), Валин (Вал), Лейцин (Лей), Изолейцин (Иле).

2) Моноаминодикарбоновые: Глютаминовая кислота (Глу), Аспаролиновая кислота (Асп)

3) Диаминомонокарбоновые: Аргинин (Арг), Лизин (Лиз), Оксилизин (Оли).

4) Гидроксилсодержащие: Треонин (Тре), Серин (Сер).

6) Ароматические: Фенилаланин (Фен), Пирозин (Пер).

7) Гетероциклические: Триптофан (Три), Пролин (Про), Оксипролин (Опр), Гистидин (Гис).

Поступление аминокислот в клетку:

ü у растений все необходимые аминокислоты синтезируются из , воды и аммиака.

ü у животных и человека утрачена способность синтезировать ряд протеиногенных аминокислот, которые стали для них незаменимыми – они должны поступать с пищей и кормом. [в классификации отмечены курсивом]. Заменимые аминокислоты – синтезируются в организме человека и животных в процессе биосинтеза.

Общая формула аминокислоты :

- CH - COOH

Все аминокислоты различаются только радикалами.

В настоящее время известно более 150 природных аминокислот с известными строением и функциями. Пример: γ-аминомасляная кислота обеспечивает процессы торможения в нервной системе. Многие аминокислоты являются предшественниками витаминов, а/б, гормонов и др. биологически-активных соединений.

Большинство аминокислот находятся в организме в свободном виде и только 20 из них входят в состав белков. Эти аминокислоты называются белковые или протеиногенные (образующие протеины). Им присуще свойство – способность при участии ферментов соединятся по аминным и карбоксильным группам и образовывать полипептидные цепи.

Многие углеводы представляют собой белые твёрдые вещества сладкие на вкус. Разные углеводы имеют разную степень сладости. Так, фруктоза в три раза слаще глюкозы. Мёд наполовину состоит из фруктозы, поэтому он такой сладкий. Другие углеводы имеют менее слабый сладкий вкус.

Наиболее известный углевод – глюкоза – один из важнейших углеводов, который в свободном виде содержится в соке растений, особенно в плодах и нектаре цветков. Углеводы присутствуют в крови, печени, мозгу и других органах животных и человека. Так, в печени человека накапливается гликоген – запасной углевод животного происхождения.

Углеводы служат основным источником энергии для организма. При расщеплении глюкозы выделяется большое количество энергии, которую организм расходует на процессы жизнедеятельности. Углеводы составляют главную часть пищевого рациона человека.

Глюкоза – вещество, в котором аккумулируется энергия Солнца. Его можно назвать связующим звеном между живой природой и Солнцем. Глюкоза синтезируется в зелёных листьях растений из углекислого газа и воды. Это уникальный процесс на Земле, обеспечивающий существование растений, животных и человека.

Формуле C6H12O6 соответствует множество структур. Среди них выделим две – глюкозы и фруктозы. В их структурах находится пять гидроксильных и одна карбонильная группы. Это тот случай, когда вещество имеет разные функциональные группы. От функциональных групп зависят химические свойства углеводов. Глюкоза является альдегидоспиртом, а фруктоза – кетоноспиротом. Следовательно, глюкоза обладает свойствами многоатомных спиртов и альдегидов, а фруктоза – многоатомных спиртов и кетонов.

Молекулы глюкозы и фруктозы способны соединяться друг с другом с отщеплением молекул воды. Две молекулы соединяются через атом кислорода. При таком объединении они образуют дисахарид, называемый сахарозой, а в быту сахаром.

Клетчатка и крахмал

При соединении многих молекул глюкозы образуются клетчатка (целлюлозы) и крахмал, а также гликоген. Всем знакомы эти вещества. Волокна хлопчатника, льна состоят из длинных молекул клетчатки. Клетчатка входит в состав древесины.

Молекулы клетчатки располагаются параллельно друг другу и прочно соединяются водородными связями. Они возникают между атомами кислорода одних молекул и атомами водорода, входящими в гидроксильную группу, других. Таких связей по всей длине клетчатки очень много. Поэтому «пакет» молекул обладает высокой прочностью.

При образовании крахмала молекулы глюкозы объединяются, создавая линейные и разветвлённые цепи. Крахмал – это рассыпающийся белый порошок. Он содержится в картофеле, в зёрнах различных злаков, овощах. Это необходимый компонент нашей пищи.

В организмах животного и человека молекулы глюкозы, объединяясь, образуют животный крахмал – гликоген. Молекулы гликогена более разветвлены, чем молекулы крахмала. Гликоген является хранилищем глюкозы: он снабжает организм глюкозой при повышенных физических нагрузках.

Глюкоза, крахмал, клетчатка имеют большое значение не только в природе, но и в промышленности. Глюкозу используют в пищевой промышленности, в медицине. Крахмал применяют для изготовления кондитерских изделий. Клетчатку употребляют в качестве волокнистого материала и для получения тканей, лаков, взрывчатых веществ.

Нужна помощь в учебе?

Предыдущая тема: Сложные эфиры: жиры
Следующая тема:   Белки: молекулы белков и их свойства

ПЕРЕВАРИВАНИЕ И ВСАСЫВАНИЕ.

СИНТЕЗ И РАСПАД ГЛИКОГЕНА.

Индивидуальное задание

студента биологического ф-та

группы 4120-2(б)

Менадиева Рамазана Исметовича

запорожье 2012

Краткая справка об углеводах
2. Классификация углеводов
3. Структурно-функциональные особенности организации моно- и дисахари- дов: строение; нахождение в природе; получение; характеристика отдельных представителей
4.


7. Синтез и распад гликогена
8. Выводы

9. Список литературы.

ВВЕДЕНИЕ

Органические соединения составляют в среднем 20-30 % массы клетки живого организма.

К ним относятся биологические полимеры: белки, нуклеиновые кислоты, углеводы, а также жиры и ряд небольших молекул-гормонов, пигментов, АТФ и пр. В различные типы клеток входит неодинаковое количество органических соединений.

КРАТКАЯ СПРАВКА ОБ УГЛЕВОДАХ

Углеводы - органические соединения, состоящие из одной или многих молекул простых сахаров. Молярная масса углеводов колеблется в пределах от 100 до 1000000 Да (Дальтон-масса, приблизительно равная массе одного атома водорода).

Их общую формулу обычно записывают в виде Сn (Н2О) n (где n - не меньше трех). Впервые в 1844 г. этот термин ввел отечественный ученый К.

Шмид (1822-1894). Название «углеводы» возникло на основании анализа первых известных представителей этой группы соединений. Оказалось, что эти вещества состоят из углерода, водорода и кислорода, причем соотношение числа атомов водорода и кислорода у них такое же, как и в воде: на два атома водорода - один атом кислорода. Таким образом, их рассматривали как соединение углерода с водой. В дальнейшем стало известно много углеводов, не отвечающих этому условию, однако название «углеводы» до сих пор остается общепринятым.

В животной клетке углеводы находятся в количестве, не превышающем 2-5 %. Наиболее богаты углеводами растительные клетки, где их содержание в некоторых случаях достигает 90 % сухой массы (например, в клубнях картофеля, семенах).

КЛАССИФИКАЦИЯ УГЛЕВОДОВ

Моносахариды - это кетонные или альдегидные производные многоатомных спиртов. Атомы углерода, водорода и кислорода, входящие в их состав, находятся в соотношении 1:2:1.

Общая формула для простых сахаров - (СН2О) n. В зависимости от длины углеродного скелета (количества атомов углерода), их разделяют на: триозы-С3, тетрозы-С4, пентозы-С5, гексозы-С6 и т. д. Кроме того, сахара разделяют на: - альдозы, имеющие в составе альдегидную группу, - С=О. К ним относится | Н глюкоза:

H H H H H
CH2OH - C - C - C - C - C
| | | | \\
OH OH OH OH OH

В растворах все сахара, начиная с пентоз, имеют циклическую форму; в линейной же форме присутствуют только триозы и тетрозы. При образовании циклической формы атом кислорода альдегидной группы связывается ковалентной связью с предпоследним атомом углерода цепи, в результате образуются полуацетали (в случае альдоз) и полукетали (в случае кетоз).

Этот сахар - один из промежуточных продуктов фотосинтеза. Пентозы встречаются в природных условиях главным образом как составные части молекул более сложно построенных веществ, например сложных полисахаридов, носящих название пентозанов, а также растительных камедей. Пентозы в значительном количестве (10-15 %) содержатся в древесине, соломе. В природе преимущественно встречается арабиноза.

Она содержится в вишневом клее, свекле и аравийской камеди, откуда ее и получают. Рибоза и дезоксирибоза широко представлены в животном и растительном мире, это сахара, входящие в состав мономеров нуклеиновых кислот РНК и ДНК. Получают рибозу эпимеризацией арабинозы.

Ксилоза образуется при гидролизе полисахарида ксилозана, содержащегося в соломе, отрубях, древесине, шелухе подсолнечника. Продуктами различных типов брожения ксилозы являются молочная, уксусная, лимонная, янтарная и другие кислоты.

Организмом человека ксилоза усваивается плохо. Гидролизаты, содержащие ксилозу, используются для выращивания некоторых видов дрожжей, они в качестве белкового источника применяются для кормления сельскохозяйственных животных. При восстановлении ксилозы получают спирт ксилит, его используют как заменитель сахара для больных диабетом.

Широко применяют ксилит как стабилизатор влажности и пластификатор (в бумажной промышленности, парфюмерии, производстве целлофана).

Он является одним из основных компонентов при получении ряда поверхностно-активных веществ, лаков, клеев. Из гексозы наиболее широко распространены глюкоза, фруктоза, галактоза, их общая формула - С6Н12О6. Глюкоза (виноградный сахар, декстроза) содержится в соке винограда и других сладких плодов и в небольших количествах - в организмах животных и человека. Глюкоза входит в состав важнейших дисахаридов - тростникового и виноградного сахаров.

Высокомолекулярные полисахариды, т. е. крахмал, гликоген (животный крахмал) и клетчатка, целиком построены из остатков молекул глюкозы, соединенных друг с другом различными способами. Глюкоза - первичный источник энергии для клеток. В крови человека глюкозы содержится 0,1-0,12 %, снижение показателя вызывает нарушение жизнедеятельности нервных и мышечных клеток, иногда сопровождаемое судорогами или обморочным состоянием. Уровень содержания глюкозы в крови регулируется сложным механизмом работы нервной системы и желез внутренней секреции.

Глюкоза используется в текстильном производстве и в некоторых других производствах в качестве восстановителя. В медицине чистая глюкоза применяется в виде растворов для введения в кровь при ряде заболеваний и в виде таблеток. Из нее получают витамин С.

Галактоза вместе с глюкозой входит в состав некоторых гликозидов и полисахаридов. Остатки молекул галактозы входят в состав сложнейших биополимеров - ганглиозидов, или гликосфинголипидов. Они обнаружены в нервных узлах (ганглиях) человека и животных и содержатся также в ткани мозга, в селезенке в эритроцитах. Получают галактозу главным образом гидролизом молочного сахара. Фруктоза (фруктовый сахар) в свободном состоянии содержится во фруктах, меде.

Входит в состав многих сложных сахаров, например тростникового сахара, из которого она может быть получена гидролизом. Образует сложно построенный высокомолекулярный полисахарид инулин, содержащийся в некоторых растениях. Фруктозу получают также из инулина. Фруктоза - ценный пищевой сахар; она в 1,5 раза слаще сахарозы и в 3 раза слаще глюкозы. Она хорошо усваивается организмом. При восстановлении фруктозы образуются сорбит и маннит. Сорбит применяют как заменитель сахара в питании больных диабетом; кроме того, его используют для производства аскорбиновой кислоты (витамин С).

Дисахариды - типичные сахароподобные полисахариды. Это твердые вещества, или некристаллизующиеся сиропы, хорошо растворимые в воде.

Как аморфные, так и кристаллические дисахариды обычно плавятся в некотором интервале температур и, как правило, с разложением. Дисахариды образуются в результате реакции конденсации между двумя моносахаридами, обычно гексозами. Связь между двумя моносахаридами называют гликозидной связью. Обычно она образуется между первым и четвертым углеродными атомами соседних моносахаридных единиц (1,4-гликозидная связь).

С12Н22О11 + Н2О = 2С6Н12О6

Солодовый сахар значительно менее сладок, чем тростниковый (в 0,6 раза при одинаковых концентрациях). Лактоза (молочный сахар).

Название этого дисахарида возникло в связи с его получением из молока (от лат. lactum - молоко). При гидролизе лактоза расщепляется на глюкозу и галактозу:

Лактоза отличается от других сахаров отсутствием гигроскопичности: она не отсыревает. Молочный сахар применяется как фармацевтический препарат и питание для грудных детей. Лактоза в 4 или 5 раз менее сладка, чем сахароза. Сахароза (тростниковый или свекловичный сахара). Название возникло в связи с ее получением либо из сахарной свеклы, либо из сахарного тростника. Тростниковый сахар был известен за много столетий до нашей эры.

Лишь в середине XVIII в. этот дисахарид был обнаружен в сахарной свекле и только в начале XIX в. он был получен в производственных условиях. Сахароза очень распространена в растительном мире. Листья и семена всегда содержат небольшое количество сахарозы. Она содержится также в плодах (абрикосах, персиках, грушах, ананасах). Ее много в кленовом и пальмовом соках, кукурузе. Это наиболее известный и широко применяемый сахар.

При гидролизе из него образуются глюкоза и фруктоза:

С12Н22О11 + Н2О = С6Н12О6 + С6Н12О6

Смесь равных количеств глюкозы и фруктозы, получающаяся в результате инверсии тростникового сахара (в связи с изменением в процессе гидролиза правого вращения раствора на левое), называется инвертным сахаром (инверсия вращения). Природным инвертным сахаром является мед, состоящий в основном из глюкозы и фруктозы. Сахарозу получают в огромных количествах.

КЛАССИФИКАЦИЯ УГЛЕВОДОВ

Сахарная свекла содержит 16-20 % сахарозы, сахарный тростник - 14-26 %. Промытую свеклу измельчают и в аппаратах многократно извлекают сахарозу водой, имеющей температуру около 80 град. Полученную жидкость, содержащую, кроме сахарозы, большое количество различных примесей, обрабатывают известью.

Известь осаждает в виде кальциевых солей ряд органических кислот, а также белки и некоторые другие вещества. Часть извести при этом образует с тростниковым сахаром растворимые в холодной воде кальциевые сахараты, которые разрушаются обработкой диоксидом углерода.

Осадок карбоната кальция отделяют фильтрацией, фильтрат после дополнительной очистки упаривают в вакууме до получения кашицеобразной массы.

Выделившиеся кристаллы сахарозы отделяют при помощи центрифуг. Так получают сырой сахарный песок, имеющий желтоватый цвет, маточный раствор бурого цвета, некристаллизующийся сироп (свекловичная патока, или меласса). Сахарный песок очищают (рафинируют) и получают готовый продукт.

1234Следующая ⇒

Дата публикования: 2015-11-01; Прочитано: 417 | Нарушение авторского права страницы

Глава I.УГЛЕВОДЫ

§ 1. КЛАССИФИКАЦИЯ И ФУНКЦИИ УГЛЕВОДОВ

Еще в древние времена человечество познакомилось с углеводами и научилось использовать их в своей повседневной жизни.

Хлопок, лен, древесина, крахмал, мед, тростниковый сахар – это всего лишь некоторые из углеводов, сыгравшие важную роль в развитие цивилизации. Углеводы относятся к числу наиболее распространенных в природе органических соединений. Они являются неотъемлемыми компонентами клеток любых организмов, в том числе бактерий, растений и животных. В растениях на долю углеводов приходится 80 – 90 % сухой массы, у животных – около 2 % массы тела.

Их синтез из углекислого газа и воды осуществляется зелеными растениями с использованием энергии солнечного света (фотосинтез ). Суммарное стехиометрическое уравнение этого процесса имеет вид:

Затем глюкоза и другие простейшие углеводы превращаются в более сложные углеводы, например, крахмал и целлюлозу.

Растения используют эти углеводы для высвобождения энергии в процессе дыхания. Этот процесс в сущности обратен процессу фотосинтеза:

Интересно знать! Зеленые растения и бактерии в процессе фотосинтеза ежегодно поглощают из атмосферы приблизительно 200 млрд. т углекислого газа. При этом происходит высвобождение в атмосферу около 130 млрд. т кислорода и синтезируется 50 млрд.

т органических соединений углерода, в основном углеводов.

Животные не способны из углекислого газа и воды синтезировать углеводы.

Потребляя углеводы с пищей, животные расходуют накопленную в них энергию для поддержания процессов жизнедеятельности.

Название «углеводы» является историческим. Первые представители этих веществ описывались суммарной формулой СmH2nOn или Cm(H2O)n. Другое название углеводов – сахара – объясняется сладким вкусом простейших углеводов.

По своей химической структуре углеводы – сложная и многообразная группа соединений. Среди них встречаются как достаточно простые соединения с молекулярной массой около 200, так и гигантские полимеры, молекулярная масса которых достигает нескольких миллионов. Наряду с атомами углерода, водорода и кислорода в состав углеводов могут входить атомы фосфора, азота, серы и, реже, других элементов.

Классификация углеводов

Все известные углеводы можно подразделить на две большие группы – простые углеводы и сложные углеводы.

Отдельную группу составляют углеводсодержащие смешанные полимеры, например, гликопротеины – комплекс с молекулой белка, гликолипиды – комплекс с липидом, и др.

Простые углеводы (моносахариды, или монозы) являются полигидроксикарбонильными соединениями, не способными при гидролизе образовывать более простые углеводные молекулы.

Если моносахариды содержат альдегидную группу, то они относятся к классу альдоз (альдегидоспиртов), если кетонную – к классу кетоз (кетоспиртов). В зависимости от числа углеродных атомов в молекуле моносахаридов различают триозы (С3), тетрозы (С4), пентозы (С5), гексозы (С6) и т.д.:

Наиболее часто в природе встречаются пентозы и гексозы.

Сложные углеводы (полисахариды, или полиозы) представляют собой полимеры, построенные из остатков моносахаридов.

Они при гидролизе образуют простые углеводы. В зависимости от степени полимеризации их подразделяют на низкомолекулярные (олигосахариды, степень полимеризации которых, как правило, меньше 10) и высокомолекулярные. Олигосахариды – сахароподобные углеводы, растворимые в воде и сладкие на вкус.

Их по способности восстанавливать ионы металлов (Cu2+, Ag+) делят на восстанавливающие и невосстанавливающие. Полисахариды в зависимости от состава можно также разделить на две группы: гомополисахариды и гетерополисахариды.

Гомополисахариды построены из моносахаридных остатков одного типа, а гетерополисахариды – из остатков разных моносахаридов.

Сказанное с примерами наиболее распространенных представителей каждой группы углеводов можно представить в виде следующей схемы:

Функции углеводов

Биологические функции полисахаридов весьма разнообразны.

Энергетическая и запасающая функция

В углеводах заключено основное количество калорий, потребляемых человеком с пищей.

Основным углеводом, поступающим с пищей, является крахмал.

Углеводы: Их классификация и состав

Он содержится в хлебобулочных изделиях, картофеле, в составе круп. В рационе человека присутствуют также гликоген (в печени и мясе), сахароза (в качестве добавок к различным блюдам), фруктоза (во фруктах и меде), лактоза (в молоке).

Полисахариды, прежде чем усвоиться организмом, должны быть гидролизованы с помощью пищеварительных ферментов до моносахаридов. Только в таком виде они всасываются в кровь. С током крови моносахариды поступают к органам и тканям, где используются для синтеза своих собственных углеводов или других веществ, либо подвергаются расщеплению с целью извлечения из них энергии.

Освобождающаяся в результате расщепления глюкозы энергия накапливается в виде АТФ.

Различают два процесса распада глюкозы: анаэробный (в отсутствие кислорода) и аэробный (в присутствии кислорода). В результате анаэробного процесса образуется молочная кислота

которая при тяжелых физических нагрузках накапливается в мышцах и вызывает боль.

В результате же аэробного процесса глюкоза окисляется до оксида углерода (IV) и воды:

В результате аэробного распада глюкозы освобождается значительно больше энергии, чем в результате анаэробного.

В целом при окислении 1 г углеводов выделяется 16,9 кДж энергии.

Глюкоза может подвергаться спиртовому брожению. Этот процесс осуществляется дрожжами в анаэробных условиях:

Спиртовое брожение широко используется в промышленности для производства вин и этилового спирта.

Человек научился использовать не только спиртовое брожение, но и нашел применение молочнокислому брожению, например, для получения молочнокислых продуктов и квашения овощей.

В организме человека и животных нет ферментов, способных гидролизовать целлюлозу, тем не менее целлюлоза является основным компонентом пищи для многих животных, в частности, для жвачных.

В желудке этих животных в больших количествах содержатся бактерии и простейшие, продуцирующие фермент целлюлазу, катализирующий гидролиз целлюлозы до глюкозы. Последняя может подвергаться дальнейшим превращениям, в результате которых образуются масляная, уксусная, пропионовая кислоты, способные всасываться в кровь жвачных.

Углеводы выполняют и запасную функцию.

Так, крахмал, сахароза, глюкоза у растений и гликоген у животных являются энергетическим резервом их клеток.

Структурная, опорная и защитная функции

Целлюлоза у растений и хитин у беспозвоночных и в грибах выполняют опорную и защитную функции.

Полисахариды образуют капсулу у микроорганизмов, укрепляя тем самым мембрану. Липополисахариды бактерий и гликопротеины поверхности животных клеток обеспечивают избирательность межклеточного взаимодействия и иммунологических реакций организма. Рибоза служит строительным материалом для РНК, а дезоксирибоза – для ДНК.

Защитную функцию выполняет гепарин. Этот углевод, являясь ингибитором свертывания крови, предотвращает образование тромбов. Он содержится в крови и соединительной ткани млекопитающих.

Клеточные стенки бактерий, образованные полисахаридами, скреплены короткими аминокислотными цепочками, защищают бактериальные клетки от неблагоприятных воздействий. Углеводы участвуют у ракообразных и насекомых в построение наружного скелета, выполняющего защитную функцию.

Регуляторная функция

Клетчатка усиливает перистальтику кишечника, улучшая этим пищеварение.

Интересна возможность использования углеводов в качестве источника жидкого топлива – этанола.

С давних пор использовали древесину для обогрева жилищ и приготовления пищи. В современном обществе этот вид топлива вытесняется другими видами – нефтью и углем, более дешевыми и удобными в использовании. Однако растительное сырье, несмотря на некоторые неудобства в использовании, в отличие от нефти и угля является возобновляемым источником энергии. Но его применение в двигателях внутреннего сгорания затруднено. Для этих целей предпочтительнее использовать жидкое топливо или газ.

Из низкосортной древесины, соломы или другого растительного сырья, содержащих целлюлозу или крахмал, можно получить жидкое топливо – этиловый спирт.

Для этого необходимо вначале гидролизовать целлюлозу или крахмал и получить глюкозу:

а затем полученную глюкозу подвергнуть спиртовому брожению и получить этиловый спирт. После очистки его можно использовать в виде топлива в двигателях внутреннего сгорания. Надо отметить, что в Бразилии с этой целью ежегодно из сахарного тростника, сорго и маниока получают миллиарды литров спирта и используют его в двигателях внутреннего сгорания.

БИОЛОГИЧЕСКАЯ РОЛЬ УГЛЕВОДОВ.

ПЕРЕВАРИВАНИЕ И ВСАСЫВАНИЕ.

СИНТЕЗ И РАСПАД ГЛИКОГЕНА.

Индивидуальное задание

студента биологического ф-та

группы 4120-2(б)

Менадиева Рамазана Исметовича

запорожье 2012

Биологическая роль биополимеров - полисахаридов
5. Химические свойства углеводов
6. Переваривание и всасывание

7. Синтез и распад гликогена
8. Выводы

9. Список литературы.

ВВЕДЕНИЕ

Органические соединения составляют в среднем 20-30 % массы клетки живого организма. К ним относятся биологические полимеры: белки, нуклеиновые кислоты, углеводы, а также жиры и ряд небольших молекул-гормонов, пигментов, АТФ и пр. В различные типы клеток входит неодинаковое количество органических соединений.

В растительных клетках преобладают сложные углеводы-полисахариды, в животных - больше белков и жиров. Тем не менее, каждая из групп органических веществ в любом типе клеток выполняет сходные функции: обеспечивает энергией, является строительным материалом.

КРАТКАЯ СПРАВКА ОБ УГЛЕВОДАХ

Углеводы - органические соединения, состоящие из одной или многих молекул простых сахаров.

Молярная масса углеводов колеблется в пределах от 100 до 1000000 Да (Дальтон-масса, приблизительно равная массе одного атома водорода). Их общую формулу обычно записывают в виде Сn (Н2О) n (где n - не меньше трех). Впервые в 1844 г. этот термин ввел отечественный ученый К. Шмид (1822-1894). Название «углеводы» возникло на основании анализа первых известных представителей этой группы соединений. Оказалось, что эти вещества состоят из углерода, водорода и кислорода, причем соотношение числа атомов водорода и кислорода у них такое же, как и в воде: на два атома водорода - один атом кислорода.

Таким образом, их рассматривали как соединение углерода с водой. В дальнейшем стало известно много углеводов, не отвечающих этому условию, однако название «углеводы» до сих пор остается общепринятым. В животной клетке углеводы находятся в количестве, не превышающем 2-5 %. Наиболее богаты углеводами растительные клетки, где их содержание в некоторых случаях достигает 90 % сухой массы (например, в клубнях картофеля, семенах).

КЛАССИФИКАЦИЯ УГЛЕВОДОВ

Выделяют три группы углеводов: моносахариды, или простые сахара (глюкоза, фруктоза); олигосахариды - соединения, состоящие из 2-10 последовательно соединенных молекул простых сахаров (сахароза, мальтоза); полисахариды, включающие более 10 молекул сахаров (крахмал, целлюлоза).

СТРУКТУРНО-ФУНКЦИОНАЛЬНЫЕ ОСОБЕННОСТИ ОРГАНИЗАЦИИ МОНО- И ДИСАХАРИДОВ: СТРОЕНИЕ; НАХОЖДЕНИЕ В ПРИРОДЕ; ПОЛУЧЕНИЕ. ХАРАКТЕРИСТИКА ОТДЕЛЬНЫХ ПРЕДСТАВИТЕЛЕЙ

Моносахариды - это кетонные или альдегидные производные многоатомных спиртов. Атомы углерода, водорода и кислорода, входящие в их состав, находятся в соотношении 1:2:1. Общая формула для простых сахаров - (СН2О) n. В зависимости от длины углеродного скелета (количества атомов углерода), их разделяют на: триозы-С3, тетрозы-С4, пентозы-С5, гексозы-С6 и т.

д. Кроме того, сахара разделяют на: - альдозы, имеющие в составе альдегидную группу, - С=О. К ним относится | Н глюкоза:

H H H H H
CH2OH - C - C - C - C - C
| | | | \\
OH OH OH OH OH

Кетозы, имеющие в составе кетонную группу, - C- . К ним, например, || относится фруктоза.

В растворах все сахара, начиная с пентоз, имеют циклическую форму; в линейной же форме присутствуют только триозы и тетрозы.

При образовании циклической формы атом кислорода альдегидной группы связывается ковалентной связью с предпоследним атомом углерода цепи, в результате образуются полуацетали (в случае альдоз) и полукетали (в случае кетоз).

ХАРАКТЕРИСТИКА МОНОСАХАРИДОВ, ОТДЕЛЬНЫЕ ПРЕДСТАВИТЕЛИ

Из тетроз в процессах обмена наиболее важна эритроза.

Этот сахар - один из промежуточных продуктов фотосинтеза. Пентозы встречаются в природных условиях главным образом как составные части молекул более сложно построенных веществ, например сложных полисахаридов, носящих название пентозанов, а также растительных камедей.

Пентозы в значительном количестве (10-15 %) содержатся в древесине, соломе. В природе преимущественно встречается арабиноза. Она содержится в вишневом клее, свекле и аравийской камеди, откуда ее и получают. Рибоза и дезоксирибоза широко представлены в животном и растительном мире, это сахара, входящие в состав мономеров нуклеиновых кислот РНК и ДНК. Получают рибозу эпимеризацией арабинозы.

Ксилоза образуется при гидролизе полисахарида ксилозана, содержащегося в соломе, отрубях, древесине, шелухе подсолнечника. Продуктами различных типов брожения ксилозы являются молочная, уксусная, лимонная, янтарная и другие кислоты. Организмом человека ксилоза усваивается плохо.

Гидролизаты, содержащие ксилозу, используются для выращивания некоторых видов дрожжей, они в качестве белкового источника применяются для кормления сельскохозяйственных животных. При восстановлении ксилозы получают спирт ксилит, его используют как заменитель сахара для больных диабетом. Широко применяют ксилит как стабилизатор влажности и пластификатор (в бумажной промышленности, парфюмерии, производстве целлофана). Он является одним из основных компонентов при получении ряда поверхностно-активных веществ, лаков, клеев.

Из гексозы наиболее широко распространены глюкоза, фруктоза, галактоза, их общая формула - С6Н12О6. Глюкоза (виноградный сахар, декстроза) содержится в соке винограда и других сладких плодов и в небольших количествах - в организмах животных и человека. Глюкоза входит в состав важнейших дисахаридов - тростникового и виноградного сахаров. Высокомолекулярные полисахариды, т. е. крахмал, гликоген (животный крахмал) и клетчатка, целиком построены из остатков молекул глюкозы, соединенных друг с другом различными способами.

Глюкоза - первичный источник энергии для клеток. В крови человека глюкозы содержится 0,1-0,12 %, снижение показателя вызывает нарушение жизнедеятельности нервных и мышечных клеток, иногда сопровождаемое судорогами или обморочным состоянием. Уровень содержания глюкозы в крови регулируется сложным механизмом работы нервной системы и желез внутренней секреции.

Одно из массовых тяжелых эндокринных заболеваний - сахарный диабет - связано с гипофункцией островковых зон поджелудочной железы. Сопровождается значительным снижением проницаемости мембраны мышечных и жировых клеток для глюкозы, что приводит к повышению содержания глюкозы в крови, а также в моче. Глюкозу для медицинских целей получают путем очистки - перекристаллизации - технической глюкозы из водных или водно-спиртовых растворов.

Глюкоза используется в текстильном производстве и в некоторых других производствах в качестве восстановителя. В медицине чистая глюкоза применяется в виде растворов для введения в кровь при ряде заболеваний и в виде таблеток.

Из нее получают витамин С. Галактоза вместе с глюкозой входит в состав некоторых гликозидов и полисахаридов. Остатки молекул галактозы входят в состав сложнейших биополимеров - ганглиозидов, или гликосфинголипидов. Они обнаружены в нервных узлах (ганглиях) человека и животных и содержатся также в ткани мозга, в селезенке в эритроцитах. Получают галактозу главным образом гидролизом молочного сахара. Фруктоза (фруктовый сахар) в свободном состоянии содержится во фруктах, меде.

Входит в состав многих сложных сахаров, например тростникового сахара, из которого она может быть получена гидролизом. Образует сложно построенный высокомолекулярный полисахарид инулин, содержащийся в некоторых растениях. Фруктозу получают также из инулина. Фруктоза - ценный пищевой сахар; она в 1,5 раза слаще сахарозы и в 3 раза слаще глюкозы.

Она хорошо усваивается организмом. При восстановлении фруктозы образуются сорбит и маннит. Сорбит применяют как заменитель сахара в питании больных диабетом; кроме того, его используют для производства аскорбиновой кислоты (витамин С).

При окислении фруктоза дает винную и щавелевую кислоту.

Дисахариды - типичные сахароподобные полисахариды. Это твердые вещества, или некристаллизующиеся сиропы, хорошо растворимые в воде. Как аморфные, так и кристаллические дисахариды обычно плавятся в некотором интервале температур и, как правило, с разложением. Дисахариды образуются в результате реакции конденсации между двумя моносахаридами, обычно гексозами. Связь между двумя моносахаридами называют гликозидной связью. Обычно она образуется между первым и четвертым углеродными атомами соседних моносахаридных единиц (1,4-гликозидная связь).

Этот процесс может повторяться бессчетное число раз, в результате чего и возникают гигантские молекулы полисахаридов. После того как моносахаридные единицы соединятся друг с другом, их называют остатками. Таким образом мальтоза состоит из двух остатков глюкозы. Среди дисахаридов наиболее широко распространены мальтоза (глюкоза + глюкоза), лактоза (глюкоза + галактоза), сахароза (глюкоза + фруктоза).

ОТДЕЛЬНЫЕ ПРЕДСТАВИТЕЛИ ДИСАХАРИДОВ

Мальтоза (солодовый сахар) имеет формулу С12Н22О11.

Углеводы. Классификация. Функции

Название возникло в связи со способом получения мальтозы: ее получают из крахмала при воздействии солода (лат. maltum - солод). В результате гидролиза мальтоза расщепляется на две молекулы глюкозы:

С12Н22О11 + Н2О = 2С6Н12О6

Солодовый сахар является промежуточным продуктом при гидролизе крахмала, он широко распространен в растительных и животных организмах.

Солодовый сахар значительно менее сладок, чем тростниковый (в 0,6 раза при одинаковых концентрациях). Лактоза (молочный сахар). Название этого дисахарида возникло в связи с его получением из молока (от лат.

lactum - молоко). При гидролизе лактоза расщепляется на глюкозу и галактозу:

С12Н22О11 + Н2О = С6Н12О6 + С6Н12О6

Лактозу получают из молока: в коровьем молоке ее содержится 4-5,5 %, в женском молоке - 5,5-8,4 %.

Лактоза отличается от других сахаров отсутствием гигроскопичности: она не отсыревает. Молочный сахар применяется как фармацевтический препарат и питание для грудных детей.

Лактоза в 4 или 5 раз менее сладка, чем сахароза. Сахароза (тростниковый или свекловичный сахара). Название возникло в связи с ее получением либо из сахарной свеклы, либо из сахарного тростника. Тростниковый сахар был известен за много столетий до нашей эры. Лишь в середине XVIII в. этот дисахарид был обнаружен в сахарной свекле и только в начале XIX в. он был получен в производственных условиях.

Сахароза очень распространена в растительном мире. Листья и семена всегда содержат небольшое количество сахарозы. Она содержится также в плодах (абрикосах, персиках, грушах, ананасах). Ее много в кленовом и пальмовом соках, кукурузе. Это наиболее известный и широко применяемый сахар. При гидролизе из него образуются глюкоза и фруктоза:

С12Н22О11 + Н2О = С6Н12О6 + С6Н12О6

Смесь равных количеств глюкозы и фруктозы, получающаяся в результате инверсии тростникового сахара (в связи с изменением в процессе гидролиза правого вращения раствора на левое), называется инвертным сахаром (инверсия вращения).

Природным инвертным сахаром является мед, состоящий в основном из глюкозы и фруктозы. Сахарозу получают в огромных количествах. Сахарная свекла содержит 16-20 % сахарозы, сахарный тростник - 14-26 %. Промытую свеклу измельчают и в аппаратах многократно извлекают сахарозу водой, имеющей температуру около 80 град.

Полученную жидкость, содержащую, кроме сахарозы, большое количество различных примесей, обрабатывают известью. Известь осаждает в виде кальциевых солей ряд органических кислот, а также белки и некоторые другие вещества.

Часть извести при этом образует с тростниковым сахаром растворимые в холодной воде кальциевые сахараты, которые разрушаются обработкой диоксидом углерода.

Осадок карбоната кальция отделяют фильтрацией, фильтрат после дополнительной очистки упаривают в вакууме до получения кашицеобразной массы. Выделившиеся кристаллы сахарозы отделяют при помощи центрифуг. Так получают сырой сахарный песок, имеющий желтоватый цвет, маточный раствор бурого цвета, некристаллизующийся сироп (свекловичная патока, или меласса).

Сахарный песок очищают (рафинируют) и получают готовый продукт.

1234Следующая ⇒

Дата публикования: 2015-11-01; Прочитано: 416 | Нарушение авторского права страницы

studopedia.org — Студопедия.Орг — 2014-2018 год.(0.002 с)…

Углеводами

Виды углеводов.

Углеводы бывают:

1) Моносахариды

2) Олигосахариды

3) Сложные углеводы

крахмал12.jpg

Основные функции.

Энергетическая.

Пластическая.

Запас питательных веществ.

Специфическая.

Защитная.

Регуляторная.

Химические свойства

Моносахариды проявляют свойства спиртов и карбонильных соединений.

Окисление.

a) Как и у всех альдегидов, окисление моносахаридов приводит к соответствующим кислотам. Так, при окислении глюкозы аммиачным раствором гидрата окиси серебра образуется глюконовая кислота (реакция "серебряного зеркала").

b) Реакция моносахаридов с гидроксидом меди при нагревании так же приводит к альдоновым кислотам.

c) Более сильные окислительные средства окисляют в карбоксильную группу не только альдегидную, но и первичную спиртовую группы, приводя к двухосновным сахарным (альдаровым) кислотам. Обычно для такого окисления используют концентрированную азотную кислоту.

Восстановление.

Восстановление сахаров приводит к многоатомным спиртам. В качестве восстановителя используют водород в присутствии никеля, алюмогидрид лития и др.

III. Специфические реакции

Кроме приведенных выше, глюкоза характеризуется и некоторыми специфическими свойствами - процессами брожения. Брожением называется расщепление молекул сахаров под воздействием ферментов (энзимов). Брожению подвергаются сахара с числом углеродных атомов, кратным трем. Существует много видов брожения, среди которых наиболее известны следующие:

a) спиртовое брожение

b) молочнокислое брожение

c) маслянокислое брожение

Упомянутые виды брожения, вызываемые микроорганизмами, имеют широкое практическое значение. Например, спиртовое – для получения этилового спирта, в виноделии, пивоварении и т.д., а молочнокислое – для получения молочной кислоты и кисломолочных продуктов.

3. Стереоизомерия моносахаридов D- и L-ряды. Открытые и циклические формулы. Пиранозы и фуранозы. α- и β-аномеры. Циклоцепная таутомерия. Явление муторотации.

Способность ряда органических соединений вращать плоскость поляризации поляризованного света вправо или влево называют оптической активностью. Исходя из сказанного выше, следует, что органические вещества могут существовать в виде правовращающих и левовращающих изомеров. Такие изомеры получили название стереоизомеров, а само явление стереоизомерии.

В основе более строгой системы классификации и обозначения стереоизомеров лежит не вращение плоскости поляризации света, а абсолютная конфигурация молекулы стереоизомера, т.е. взаимное расположение четырех обязательно разных замещающих групп, находящихся в вершинах тетраэдра, вокруг локализованного в центре атома углерода, который получил название асимметрического атома углерода или хирального центра. Хиральные или, как их еще называют, оптически активные атомы углерода обозначают в структурных формулах звездочками

Таким образом, под термином стереоизомерия следует понимать различную пространственную конфигурацию заместителей у соединений, имеющих одну и ту же структурную формулу и обладающих одинаковыми химическими свойствами. Такой вид изомерии называют также зеркальной изомерией. Наглядным примером зеркальной изомерии могут служить правая и левая ладони руки. Ниже приведены структурные формулы стереоизомеров глицеринового альдегида и глюкозы.

Если у асимметрического атома углерода в проекционной формуле глицеринового альдегида ОН-группа располагается справа, такой изомер называют D-стереоизомером, а если ОН-группа расположена слева –L-стереоизомером.

В случае тетроз, пентоз, гексоз и других моноз, которые обладают двумя и более асимметрическими атомами углерода, принадлежность стереоизомера к D- или L-ряду определяют по расположению ОН-группы у предпоследнего атома углерода в цепи – он же является последним асимметрическим атомом. Например, для глюкозы оценивают ориентацию ОН-группы у 5-ого атома углерода. Абсолютно зеркальные стереоизомеры называют энантиомерами или антиподами.

Стереоизомеры не отличаются по своим химическим свойствам, но отличаются по биологическому действию (биологической активности). Большая часть моносахаридов в организме млекопитающих относится к D-ряду – именно к этой конфигурации специфичны ферменты, ответственные за их метаболизм. В частности D-глюкоза воспринимается как сладкое вещество, благодаря способности взаимодействовать с вкусовыми рецепторами языка, в то время как L-глюкоза безвкусна, поскольку ее конфигурация не воспринимается вкусовыми рецепторами.

В общем виде строение альдоз и кетоз можно представить следующим образом.

Стереоизомерия. Молекулы моносахаридов содержат несколько центров хиральности, что служит причиной существования многих стереоизомеров, отвечающих одной и той же структурной формуле. Например, в альдогексозе имеются четыре асимметрических атома углерода и ей соответствуют 16 стереоизомеров (24), т. е. 8 пар энантиомеров. По сравнению с соответствующими альдозами кетогексозы содержат на один хиральный атом углерода меньше, поэтому число стереоизомеров (23) уменьшается до 8 (4 пары энантиомеров).

Открытые (нециклические) формы моносахаридов изображают в виде проекционных формул Фишера. Углеродную цепь в них записывают вертикально. У альдоз наверху помещают альдегидную группу, у кетоз - соседнюю с карбонильной первичную спиртовую группу. С этих групп начинают нумерацию цепи.

Для обозначения стереохимии используется D,L-система. Отнесение моносахарида к D- или L-ряду проводят по конфигурации хирального центра, наиболее удаленного от оксогруппы, независимо от конфигурации остальных центров! Для пентоз таким «определяющим» центром является атом С-4, а для гексоз - С-5. Положение группы ОН у последнего центра хиральности справа свидетельствует о принадлежности моносахарида к D-ряду, слева - к L-ряду, т. е. по аналогии со стереохимическим стандартом - глицериновым альдегидом

Циклические формы. Открытые формы моносахаридов удобны для рассмотрения пространственных отношений между стереоизомерными моносахаридами. В действительности моносахариды по строению являются циклическими полуацеталями. Образование циклических форм моносахаридов можно представить как результат внутримолекулярного взаимодействия карбонильной и гидроксильной групп, содержащихся в молекуле моносахарида.

Впервые циклическую полуацетальную формулу глюкозы предложил А. А. Колли (1870). Он объяснил отсутствие некоторых альдегидных реакций у глюкозы наличием трехчленного этиленоксидного (α-окисного) цикла:

Позже Толленс (1883) предложил аналогичную полуацетальную формулу глюкозы, но с пятичленным (γ-окисным) бутиленоксидным кольцом:

Формулы Колли - Толленса громоздки и неудобны, не отражают строения циклической глюкозы, поэтому были предложены формулы Хеуорса.

В результате циклизации образуются термодинамически более устойчивые фуранозные (пятичленные) и пиранозные (шестичленные) циклы. Названия циклов происходят от названий родственных гетероциклических соединений - фурана и пирана.

Образование этих циклов связано со способностью углеродных цепей моносахаридов принимать достаточно выгодную клешневидную конформацию. Вследствие этого в пространстве оказываются сближенными альдегидная (или кетонная) и гидроксильная при С-4 (или при С-5) группы, т. е. те функциональные группы, в результате взаимодействия которых осуществляется внутримолекулярная циклизация.

В циклической форме создается дополнительный центр хиральности - атом углерода, ранее входивший в состав карбонильной группы (у альдоз это С-1). Этот атом называют аномерным, а два соответствующих стереоизомера - α- и β-аномерами (рис. 11.1). Аномеры представляют собой частный случай эпимеров.

У α-аномера конфигурация аномерного центра одинакова с конфигурацией «концевого» хирального центра, определяющего принадлежность к d- или l-ряду, а у β-аномера - противоположна. В проекционных формулах Фишера у моносахаридов d-ряда в α-аномере гликозидная группа ОН находится справа, а в β-аномере - слева от углеродной цепи.

Рис. 11.1. Образование α- и β-аномеров на примере d-глюкозы

Формулы Хеуорса. Циклические формы моносахаридов изображают в виде перспективных формул Хеуорса, в которых циклы показывают в виде плоских многоугольников, лежащих перпендикулярно плоскости рисунка. Атом кислорода располагают в пиранозном цикле в дальнем правом углу, в фуранозном - за плоскостью цикла. Символы атомов углерода в циклах не указывают.

Для перехода к формулам Хеуорса циклическую формулу Фишера преобразуют так, чтобы атом кислорода цикла располагался на одной прямой с атомами углерода, входящими в цикл. Это показано ниже на примере a-d-глюкопиранозы путем двух перестановок у атома С-5, что не изменяет конфигурацию этого асимметрического центра (см. 7.1.2). Если преобразованную формулу Фишера расположить горизонтально, как требуют правила написания формул Хеуорса, то заместители, находившиеся справа от вертикальной линии углеродной цепи, окажутся под плоскостью цикла, а те, что были слева, - над этой плоскостью.

У d-альдогексоз в пиранозной форме (и у d-альдопентоз в фуранозной форме) группа СН2ОН всегда располагается над плоскостью цикла, что служит формальным признаком d-ряда. Гликозидная гидроксильная группа у a-аномеров d-альдоз оказывается под плоскостью цикла, у β-аномеров - над плоскостью.

D-ГЛЮКОПИРАНОЗА

По аналогичным правилам осуществляется переход и у кетоз, что показано ниже на примере одного из аномеров фуранозной формы d-фруктозы.

Циклоцепная таутомерия обусловлена переходом открытых форм моносахаридов в циклические и наоборот.

Изменение во времени угла вращения плоскости поляризации света растворами углеводов называют мутаротацией.

Химическая сущность мутаротации состоит в способности моносахаридов к существованию в виде равновесной смеси таутомеров - открытой и циклических форм. Такой вид таутомерии называется цикло-оксо-таутомерией.

В растворах равновесие между четырьмя циклическими таутомерами моносахаридов устанавливается через открытую форму - оксоформу. Взаимопревращение a- и β-аномеров друг в друга через про- межуточную оксоформу называется аномеризацией.

Таким образом, в растворе d-глюкоза существует в виде таутомеров: оксоформы и a- и β-аномеров пиранозных и фуранозных циклических форм.

ЛАКТИМ-ЛАКТАМНАЯ ТАУТОМЕРИЯ

Этот вид таутомерии характерен для азотсодержащих гетероциклов с фрагментом N=C-ОН.

Взаимопревращение таутомерных форм связано с переносом протона от гидроксильной группы, напоминающей фенольную ОН-группу, к основному центру - пиридиновому атому азота и наоборот. Обычно лактамная форма в равновесии преобладает.

Моноаминомонокарбоновые.

По полярности радикала:

С неполярным радикалом:(Аланин,валин, лейцин, фенилаланин)Моноамино,монокарбоновые

С полярным незаряженным радикалом(Глицин, серин, аспарагин, глутамин)

С отрицательно заряженным радикалом(Аспарагиновая,глутаминовая кислота)моноамино,дикарбоновые

С положительно заряженным радикалом(лизин,гистидин) диамино,монокарбоновые

Стереоизомерия

Все природные α-аминокислоты, кроме глицина (NH 2 -CH 2 - COOH), имеют асимметрический атом углерода (α-углеродный атом), а некоторые из них даже два хиральных центра, например, треонин. Таким образом, все аминокислоты могут существовать в виде пары несовместимых зеркальных антиподов (энантиомеров).

За исходное соединение, с которым принято сравнивать строение 
α-аминокислот, условно принимают D- и L-молочные кислоты, конфигурации которых, в свою очередь, установлены по D- и L-глицериновым альдегидам.

Все превращения, которые осуществляются в этих рядах при переходе от глицеринового альдегида к α-аминокислоте, выполняются в соответствии с главным требованием − они не создают новых и не разрывают старых связей у асимметрического центра.

Для определения конфигурации α-аминокислоты в качестве эталона часто используют серин (иногда аланин).

Природные аминокислоты, входящие в состав белков, относятся к L-ряду. 
D-формы аминокислот встречаются сравнительно редко, они синтезируются только микроорганизмами и называются «неприродными» аминокислотами. Животными организмами D-аминокислоты не усваиваются. Интересно отметить действие D- и L-аминокислот на вкусовые рецепторы: большинство аминокислот L-ряда имеют сладкий вкус, а аминокислоты D-ряда − горькие или безвкусные.

Без участия ферментов самопроизвольный переход L-изомеров в D-изомеры с образованием эквимолярной смеси (рацемическая смесь) осуществляется в течение достаточно длительного промежутка времени.

Рацемизация каждой L-кислоты при данной температуре идет с определенной скоростью. Это обстоятельство можно использовать для установления возраста людей и животных. Так, например, в твердой эмали зубов имеется белок дентин, в котором L-аспартат переходит в D-изомер при температуре тела человека со скоростью 0,01% в год. В период формирования зубов в дентине содержится только L-изомер, поэтому по содержанию D-аспартата можно рассчитать возраст человека или животного.

I. Общие свойства

1. Внутримолекулярная нейтрализация → образуется биполярный цвиттер-ион:

Водные растворы электропроводны. Эти свойства объясняются тем, что молекулы аминокислот существуют в виде внутренних солей, которые образуются за счет переноса протона от карбоксила к аминогруппе:

цвиттер-ион

Водные растворы аминокислот имеют нейтральную, кислую или щелочную среду в зависимости от количества функциональных групп.

2. Поликонденсация → образуются полипептиды (белки):


При взаимодействии двух α-аминокислот образуется дипептид .

3. Разложение → Амин + Углекислый газ:

NH 2 -CH 2 -COOH → NH 2 -CH 3 + CO 2

IV. Качественная реакция

1. Все аминокислоты окисляются нингидрином с образованием продуктов сине-фиолетового цвета!

2. С ионами тяжелых металлов α-аминокислоты образуют внутрикомплексные соли. Комплексы меди (II), имеющие глубокую синюю окраску, используются для обнаружения α-аминокислот.

Физиологические активные пептиды. Примеры.

Пептиды, обладая высокой физиологической активностью, регулируют различные биологические процессы. По биорегуляторному действию пептиды принято делить на несколько групп:

· соединения, обладающие гормональной активностью (глюкагон, окситоцин, вазопрессин и др.);

· вещества, регулирующие пищеварительные процессы (гастрин, желудочный ингибирующий пептид и др.);

· пептиды, регулирующие аппетит (эндорфины, нейропептид-Y, лептин и др.);

· соединения, обладающие обезболивающим эффектом (опиоидные пептиды);

· органические вещества, регулирующие высшую нервную деятельность, биохимические процессы, связанные с механизмами памяти, обучения, возникновением чувства страха, ярости и др.;

· пептиды, которые регулируют артериальное давление и тонус сосудов (ангиотензин II, брадикинин и др.).

· пептиды, которые обладают противоопухолевым и противовоспалительным свойствами (Луназин)

· Нейропептиды - соединения, синтезируемые в нейронах, обладающие сигнальными свойствами

Классификация белков

-по форме молекул (глобулярные или фибриллярные);

-по молекулярной массе (низкомолекулярные, высокомолекулярные и др.);

-по химическому строению (наличие или отсутствие небелковой части);

-по локализации в клетке (ядерные, цито-плазматические, лизосомальные и др.);

-по локализации в организме (белки крови, печени, сердца и др.);

-по возможности адаптивно регулировать количество данных белков : белки, синтезирующиеся с постоянной скоростью (конститутивные), и белки, синтез которых может усиливаться при воздействии факторов среды (индуцибельные);

-по продолжительности жизни в клетке (от очень быстро обновляющихся белков, с Т 1/2 менее 1 ч, до очень медленно обновляющихся белков, Т 1/2 которых исчисляют неделями и месяцами);

-по схожим участкам первичной структуры и родственным функциям (семейства белков).

Классификация белков по химическому строению

Простые белки .Некоторые белки содержат в своём составе только полипептидные цепи, состоящие из аминокислотных остатков. Их называют "простые белки". Примером простых белков - гистоны ; в их составе содержится много аминокислотных остатков лизина и аргинина, радикалы которых имеют положительный заряд .

2. Сложные белки . Очень многие белки, кроме полипептидных цепей, содержат в своём составе небелковую часть, присоединённую к белку слабыми или ковалентными связями. Небелковая часть может быть представлена ионами металлов, какими-либо органическими молекулами с низкой или высокой молекулярной массой. Такие белки называют "сложные белки". Прочно связанная с белком небелковая часть носит название простетической группы.

У биополимеров, макромолекулы которых состоят из полярных и неполярных групп, сольватируются полярные группы, если растворитель полярен. В неполярном растворителе, соответственно, сольватируются неполярные участки макромолекул.

Обычно он хорошо набухает в жидкости, близкой к нему по химическому строению. Так, углеводородные полимеры типа каучуков набухают в неполярных жидкостях: гексане, бензоле. Биополимеры, в состав молекул которых входит большое количество полярных функциональных групп, например, белки, полисахариды, лучше набухают в полярных растворителях: воде, спиртах и т.д.

Образование сольватной оболочки молекулы полимера сопровождается выделением энергии, которая называется теплотой набухания .

Теплота набухания зависит от природы веществ. Она максимальна при набухании в полярном растворителе ВМС, содержащего большое количество полярных групп и минимальна при набухании в неполярном растворителе углеводородного полимера.

Кислотность среды, при которой устанавливается равенство положительных и отрицательных зарядов и белок становится электронейтральным, называется изоэлектрической точкой (ИЭТ) . Белки, у которых ИЭТ находится в кислой среде, называются кислыми. Белки, у которых значение ИЭТ находится в щелочной среде, называются основными. У большинства растительных белков ИЭТ находится в слабокислой среде

. Набухание и растворение ВМС зависят от:
1. природы растворителя и полимера,
2. строения макромолекул полимера,
3. температуры,
4. присутствия электролитов,
5. от рН среды (для полиэлектролитов).

Роль 2,3-дифосфоглицерата

2,3-Дифосфоглицерат образуется в эритроцитах из 1,3-дифосфоглицерата, промежуточного метаболита гликолиза, в реакциях, получивших название шунт Раппопорта.

Реакции шунта Раппопорта

2,3-Дифосфоглицерат располагается в центральной полости тетрамера дезоксигемоглобина и связывается с β-цепями, образуя поперечный солевой мостик между атомами кислорода 2,3-дифосфоглицерата и аминогруппами концевого валина обеих β-цепей, также аминогруппами радикалов лизина и гистидина.

Расположение 2,3-дифосфоглицерата в гемоглобине

Функция 2,3-дифосфоглицерата заключается в снижении сродства гемоглобина к кислороду. Это имеет особенное значение при подъеме на высоту, при нехватке кислорода во вдыхаемом воздухе. В этих условиях связывание кислорода с гемоглобином в легких не нарушается, так как концентрация его относительно высока. Однако в тканях за счет 2,3-дифосфоглицерата отдача кислорода возрастает в 2 раза.

Углеводы. Классификация. Функции

Углеводами - называют органические соединения, состоящие из углерода (C), водорода (H) и кислорода(O2). Общая формула таких углеводов Cn(H2O)m. Примером может служить глюкоза (С6Н12О6)

С точки зрения химии углеводы являются органическими веществами, содержащими неразветвленную цепь из нескольких атомов углерода, карбонильную группу (C=O), а также несколько гидроксильных групп(OH).

В организме человека углеводы производятся в незначительном количестве, поэтому основное их количество поступает в организм с продуктами питания.

Виды углеводов.

Углеводы бывают:

1) Моносахариды (самые простые формы углеводов)

Глюкоза С6Н12О6 (основное топливо в нашем организме)

Фруктоза С6Н12О6 (самый сладкий углевод)

Рибоза С5Н10О5 (входит в состав нуклеиновых кислот)

Эритроза С4H8O4 (промежуточная форма при расщеплении углеводов)

2) Олигосахариды (содержат от 2 до 10 остатков моносахаридов)

Сахароза С12Н22О11 (глюкоза + фруктоза, или в просто – тростниковый сахар)

Лактоза C12H22O11 (молочный сахар)

Мальтоза C12H24O12 (солодовый сахар, состоит из двух связанных остатков глюкозы)

110516_1305537009_Sugar-Cubes.jpg

3) Сложные углеводы (состоящие из множества остатков глюкозы)

Крахмал (С6H10O5)n (наиболее важный углеводный компонент пищевого рациона, человек потребляет из углеводов около 80% крахмала.)

Гликоген (энергетические резервы организма, излишки глюкозы, при поступлении в кровь, откладываются про запас организмом в виде гликогена)

крахмал12.jpg

4) Волокнистые, или неусваеваемые, углеводы, определяющиеся как пищевая клетчатка.

Целлюлоза (самое распостраненное органическое вещество на земле и вид клетчатки)

По простой классификации углеводы можно разделить на простые и сложные. В простые входят моносахариды и олигосахариды, в сложные полисахариды и клетчатка.

Основные функции.

Энергетическая.

Углеводы являются основным энергетическим материалом. При распаде углеводов высвобождаемая энергия рассеивается в виде тепла или накапливается в молекулах АТФ. Углеводы обеспечивают около 50 – 60 % суточного энергопотребления организма, а при мышечной деятельности на выносливость - до 70 %. При окислении 1 г углеводов выделяется 17 кДж энергии (4,1 ккал). В качестве основного энергетического источника в организме используется свободная глюкоза или запасенные углеводы в виде гликогена. Является основным энергетическим субстратом мозга.

Пластическая.

Углеводы (рибоза, дезоксирибоза) используются для построения АТФ, АДФ и других нуклеотидов, а также нуклеиновых кислот. Они входят в состав некоторых ферментов. Отдельные углеводы являются структурными компонентами клеточных мембран. Продукты превращения глюкозы (глюкуроновая кислота, глюкозамин и др.) входят в состав полисахаридов и сложных белков хрящевой и других тканей.

Запас питательных веществ.

Углеводы накапливаются (запасаются) в скелетных мышцах, печени и других тканях в виде гликогена. Систематическая мышечная деятельность приводит к увеличению запасов гликогена, что повышает энергетические возможности организма.

Специфическая.

Отдельные углеводы участвуют в обеспечении специфичности групп крови, исполняют роль антикоагулянтов (вызывающие свертывание), являясь рецепторами цепочки гормонов или фармакологических веществ, оказывая противоопухолевое действие.

Защитная.

Сложные углеводы входят в состав компонентов иммунной системы; мукополисахариды находятся в слизистых веществах, которые покрывают поверхность сосудов носа, бронхов, пищеварительного тракта, мочеполовых путей и защищают от проникновения бактерий и вирусов, а также от механических повреждений.

Регуляторная.

Клетчатка пищи не поддается процессу расщепления в кишечнике, однако активирует перистальтику кишечного тракта, ферменты, использующиеся в пищеварительном тракте, улучшая пищеварение и усвоение питательных веществ.

Углеводы — обширный класс органических соединений. В клетках живых организмов углеводы являются источниками и аккумуляторами энергии, в растениях (на их долю приходится до 90 % сухого вещества) и некоторых животных (до 20 % сухого вещества) выполняют роль опорного (скелетного) материала, входят в состав многих важнейших природных соединений, выступают в качестве регуляторов ряда важнейших биохимических реакций. В соединении с белками и липидами углеводы образуют сложные высокомолекулярные комплексы, представляющие основу субклеточных структур, а следовательно, основу живой материи. Они входят в состав природных биополимеров — нуклеиновых кислот, участвующих в передаче наследственной информации.

Углеводы образуются в растениях в ходе фотосинтеза, благодаря ассимиляции хлорофиллом, под действием солнечных лучей, углекислого газа, содержащегося в воздухе, а образующийся при этом кислород выделяется в атмосферу. Углеводы являются первыми органическими веществами в кругообороте углерода в природе.

Все углеводы делят на две группы: простые и сложные. Простыми углеводами (моносахариды, монозы) называют углеводы, которые не способны гидролизоваться с образованием более простых соединений.

Сложные углеводы (полисахариды, полиозы) — углеводы, способные гидролизоваться на более простые. У них число атомов углерода не равно числу атомов кислорода. Сложные углеводы очень разнообразны по составу, молекулярной массе, а следовательно, и по свойствам. Их делят на две группы: низкомолекулярные (сахароподобные или олигосахариды) от греч. oligos — малый, немногочисленный и высокомолекулярные (несахароподобные полисахариды). Последние — соединения с большой молекулярной массой, в состав которых могут входить остатки сотен тысяч простых углеводов.

Молекулы простых углеводов — моноз — построены из неразветвленных углеродных цепей, содержащих различное число атомов углерода. В состав растений и животных входят главным образом монозы с 5 и 6 углеродными атомами — пентозы и гексозы. У атомов углерода расположены гидроксильные группы, а один из них окислен до альдегидной (альдозы) или кетонной (кетозы) группы.

В водных растворах, в том числе в клетке, монозы из ациклческих (альдегидо-кетоно) форм переходят в циклические (фуранозные, пиранозные) и обратно. Этот процесс получил, название динамической изомерии — таутомерии.

Циклы, которые входят в состав молекул моноз, могут быть построены из 5 атомов (из них 4 атома углерода и один кислорода) — они получили название фуранозных, или из 6 атомов (5 атомов углерода и один кислорода), их называют пиранозными.

В молекулах моносахаридов имеются углеродные атомы, связанные с четырьмя различными заместителями. Они получили название асимметрических и обозначены в формулах глюкозы и фруктозы звездочками. Наличие в молекулах моноз асимметричных углеродных атомов приводит к появлению оптических изомеров, обладающих способностью вращать плоскополяризованный луч света. Направление вращения обозначают знаком «+» (правое вращение) и «-» (левое вращение). Важной характеристикой моноз является удельное вращение. Угол вращения плоскости поляризации свежеприготовленного раствора моносахарида вследствие указанных ранее таутомерных превращений при стоянии изменяется, пока не достигнет некоторой постоянной величины. Изменение угла вращения растворов Сахаров при стоянии получило название мутаротации. Например, для глюкозы это изменение происходит от +106 до +52,5°; обычно это изображают так: +106 ° -»- +52,5 °.

В растениях чаще содержится D-форма моноз.

Наличие спиртовых, альдегидных или кетонных групп, а также появление в циклических формах моноз группы ОН с особыми свойствами (гликозидный, полуацетальный гидроксил) определяет химическое поведение этих соединений, а следовательно, и превращения их в технологических процессах. Моносахариды — сильные восстановители — осаждают серебро из аммиачных растворов оксида серебра (знакома всем из школьного курса химии реакция «серебряного зеркала» и оксид меди Cu20 при взаимодействии с раствором Фелинг (Фелингова жидкость), который приготавливают смешиванием равных объемов водного раствора сульфата меди и щелочного раствора натрий-калиевой соли винной кислоты. Последняя реакция используется для определения содержания восстанавливающих Сахаров (метод Бертрана) по количеству выпавшего осадок оксида меди СигО.

Фурфурол — один из компонентов, который входит в состав веществ, создающих аромат хлеба.

Большое значение в пищевой технологии имеет взаимодействие моноз и других восстанавливающих Сахаров (в реакции могут участвовать и другие соединения, имеющие карбонильную группу, — альдегиды, кетоны и т. д.) с соединениями, содержащими аминогруппу — NH2: первичными аминами, аминокислотами, пептидами, белками.

Особое место в превращениях моносахаридов занимают два процесса: дыхание и брожение.

Дыхание — это экзотермический процесс ферментативной окисления моноз до воды и углекислого газа.

На каждый моль израсходованной глюкозы (180 г) выделяется 2870 кДж (672 ккал) энергии. Дыхание наряду с фотосинтезом является важнейшим источником энергии для живых организмов.

Различают аэробное (кислородное) дыхание — дыхание при достаточном количестве воздуха (схема этого процесса был; нами только что рассмотрена) и анаэробное (бескислородное дыхание, являющееся в сущности спиртовым брожением:

При этом на 1 моль израсходованной глюкозы выделяется 118,0 кДж (28,2 ккал) энергии.

Спиртовое брожение, протекающее под влиянием микроорганизмов, играет исключительную роль в производстве спирта вина, хлебобулочных изделий. Наряду с главными продуктами спиртом и диоксидом углерода — при спиртовом брожении мона образуются разнообразные побочные продукты (глицерин, янтарная кислота, уксусная кислота, изоамиловый и изопропиловый спирты и др.), существенно влияющие на вкус и аромат пищевых продуктов. Кроме спиртового брожения существует молочнокислое брожение моноз:

Это основной процесс при получении простокваши, кефира и других молочнокислых продуктов, квашении капусты.

Брожение моноз может приводить к образованию масляной кислоты (маслянокислое брожение).

Моносахариды — твердые кристаллические вещества, они гигроскопичны, хорошо растворяются в воде, образуя сиропы, трудно растворимы в спирте. Большинство из них имеют сладкий вкус. Рассмотрим наиболее важные моносахариды.

Гексозы. Главными представителями этой группы моноз являются глюкоза и фруктоза.

Глюкоза (виноградный сахар, декстроза) широко распространена в природе: содержится в зеленых частях растений, в виноградном соке, семенах и фруктах, ягодах, меде. Входит в состав важнейших полисахаридов: сахарозы, крахмала, клетчатки, многих гликозидов. Получают глюкозу гидролизом крахмала и клетчатки. Сбраживается дрожжами.

Фруктоза (фруктовый сахар, левулеза) в свободном состоянии содержится в зеленых частях растений, нектаре цветов, семенах, меде. Входит в состав сахарозы, образует высокомолекулярный полисахарид инсулин. Сбраживается дрожжами. Получают из сахарозы, инсулина, трансформацией других моноз методами биотехнологии.

Глюкоза и фруктоза играют большую роль в пищевой промышленности, являясь важным компонентом продуктов питания и исходным материалом при брожении.

Пентозы. В природе широко распространены L (+)-арабиноза, рибоза, ксилоза, главным образом в качестве структурных компонентов сложных полисахаридов: пентозанов, гемицеллюлоз, пектиновых веществ, а также нуклеиновых кислот и других природных

Горький и жгучий вкус, который характерен и из-за которого ценятся горчица и хрен, обусловлен образованием при гидролизе эфирногорчичного масла. Содержание калиевой соли синигрина в горчице и хрене достигается 3-3,5 %.

В косточках персика, абрикосов, слив, вишен, яблок, груш, в листьях лавровишни, семенах горького миндаля содержится гликозид амигдалин. Он представляет собой сочетание дисахарида гентиобиозы и агликона, включающего остаток синильной кислоты и бензальдегида.

L (+)-арабиноза, не сбраживается дрожжами. Содержится в свекле.

Рибоза — важный структурный компонент рибонуклеиновых кислот.

D (+)-ксилоза — структурный компонент содержащихся в соломе, отрубях, древесине полисахаридов ксилозанов. Получаемую при гидролизе ксилозу используют в качестве подслащивающего вещества для больных диабетом.

Гликозиды. В природе, главным образом в растениях, распространены производные Сахаров, получившие название гликозидов. Молекула гликозида состоит из двух частей: сахара, он обычно представлен моносахаридом, и агликона («не-сахара»).

В качестве агликона в построении молекул гликозидов могут принимать участие остатки спиртов, ароматических соединений, стероидов и т. д. Многие из гликозидов имеют горький вкус и специфический запах, с чем и связана их роль в пищевой промышленности, некоторые из них обладают токсическим действием, об этом следует помнить.

Гликозид синигрин — содержится в семенах черной и сарептской горчицы, корнях хрена, в рапсе, придавая им горький вкус и специфический запах. Под влиянием содержащихся в семенах горчицы ферментов этот гликозид гидролизуется.

При кислотном или ферментативном гидролизе образуются две молекулы глюкозы, синильная кислота и бензальдегид. Содержащаяся в амигдалине синильная кислота может вызвать отравление.

Гликозид ванилина содержится в стручках ванили (до 2 % на сухое вещество), при его ферментативном гидролизе образуются глюкоза и ванилин:

Ванилин — ценное душистое вещество, применяемое в пищевой и парфюмерной промышленности.

В картофеле, баклажанах содержатся гликозиды салонины, которые могут придавать картофелю горький, неприятный вкус, особенно, если плохо удаляются наружные его слои.

Полисахариды (сложные углеводы). Молекулы полисахаридов построены из различного числа остатков моноз, которые образуются при гидролизе сложных углеводов. В зависимости от этого их делят на низкомолекулярные и высокомолекулярные полисахариды. Из первых особое значение имеют дисахариды, молекулы которых построены из двух одинаковых или разных остатков моноз. Одна из молекул моноз всегда участвует в построении молекулы дисахарида своим полуацетальным гидроксилом, другая — полуацетальным или одним из спиртовых гидроксилов. Если в образовании молекулы дисахарида монозы участвуют своими полуацетальными гидроксилами, образуется не-восстанавливающий дисахарид, во втором — восстанавливающий. Это одна из главных характеристик дисахаридов. Важнейшая реакция дисахаридов — гидролиз.

Более подробно рассмотрим строение и свойства мальтозы, сахарозы, лактозы, которые широко распространены в природе — которые играют важную роль в пищевой технологии.

Мальтоза (солодовый сахар). Молекула мальтозы состоит из двух остатков глюкозы. Она является восстанавливающим дисахаридом:

Мальтоза довольно широко распространена в природе, она содержится в проросшем зерне и особенно в больших количествах в солоде и солодовых экстрактах. Отсюда и ее название (от лат. maltum — солод). Образуется при неполном гидролизе крахмала разбавленными кислотами или амилолитическимн ферментами, является одним из основных компонентов крахмальной патоки, широко используемой в пищевой промышленности. При гидролизе мальтозы образуются две молекулы глюкозы.

Этот процесс играет большую роль в пищевой технологи, например при брожении теста как источник сбраживаемых сахаров.

Сахароза (тростниковый сахар, свекловичный сахар). При ее гидролизе образуются глюкоза и фруктоза.

Следовательно, молекула сахарозы состоит из остатков глюкозы и фруктозы. В построении молекулы сахарозы глюкоза и фруктоза участвуют своими полуацетальными гидроксилами. Сахароза — невосстанавливающий сахар.

Сахароза — наиболее известный и широко применяемый в питании и пищевой промышленности сахар. Содержится в листьях, стеблях, семенах, плодах, клубнях растений. В сахарной свекле от 15 до 22 % сахарозы, сахарном тростнике -12-15 %, это основные источники ее получения, отсюда же возникли и ее названия — тростниковый или свекловичный сахар.

В картофеле 0,6 % сахарозы, луке — 6,5, моркови — 3,5, свекле — 8,6, дыне — 5.9, абрикосах и персиках — 6,0, апельсинах — 3,5, винограде — 0,5 %. Ее много в кленовом и пальмовом соке, кукурузе — 1,4-1,8 %.

Сахароза кристаллизуется без воды в виде больших моноклинических кристаллов. Удельное вращение водного ее раствора -(-66,5°. Гидролиз сахарозы сопровождается образованием глюкозы и фруктозы. Фруктоза обладает более сильным левым вращением (-92°), чем глюкоза правым (+ 52,5°), поэтому при гидролизе сахарозы угол вращения изменяется. Гидролиз сахарозы получил название инверсии (обращение), а смесь образующихся разных количеств глюкозы и фруктозы — инвертным сахаром. Сахароза сбраживается дрожжами (после гидролиза), а при нагревании выше температуры плавления (160-186 °С) карамелизуется, т. е. превращается в смесь сложных продуктов: карамелана и других, теряя при этом воду. Эти продукты под названием «колер» используют при производстве напитков и в коньячном производстве для окраски готовых продуктов.

Лактоза (молочный сахар). Молекула лактозы состоит из остатков галактозы и глюкозы и обладает восстанавливающими свойствами.

Лактозу получают из молочной сыворотки отхода при производстве масла и сыра. В коровьем молоке содержится 46 % лактозы. Отсюда и возникло ее название (от лат. lactum молоко). Водные растворы лактозы мутаротируют, их удельное вращение после завершения этого процесса +52,2 °. Лактоза гигроскопична. Не участвует в спиртовом брожении, но под влиянием молочнокислых дрожжей гидролизуется с последующим сбраживанием образовавшихся продуктов в молочную кислоту.

Высокомолекулярные несахароподобные полисахариды построены из большого числа (до 6-10 тыс.) остатков моноз. Они делятся на гомополисахариды, построенные из молекул моносахаридов только одного вида (крахмал, гликоген, клетчатка) гетерополисахариды, состоящие из остатков различных моносахаридов.

Крахмал (CeHioOs), — резервный полисахарид, главный компонент зерна, картофеля и многих видов пищевого сырья. Наиболее важный по своей пищевой ценности и использованию в пищевой промышленности несахароподобный полисахарид.

Содержание крахмала в пищевом сырье определяется культурой, сортом, условиями произрастания, спелостью. В клетках крахмал образует зерна (гранулы, рис. 8) размером от 2 до 180 мкм. Особенно крупные зерна у крахмала картофеля. Форма зерен зависит от культуры, они могут быть простыми (пшеница, рожь) или сложными, состоящими их более мелких зерен. От особенностей строения и размеров крахмальных зерен и, естественно, от состава крахмала зависят его физико-химические свойства. Крахмал — смесь полимеров двух типов, построенных из остатков глюкопиранозы: амилозы и амилопектина. Их содержание в крахмале зависит от культуры и колеблется от 18 до 25 % амилазы и 75-82 % амилопектина.

Амилоза — линейный полимер, построенный из остатков глюкопиранозы, связь 1-4а. Ее молекула содержит от 1000 до 6000 остатков глюкозы. Молекулярная масса 16 000-1000 000. Амилоза имеет спиралевидное строение. Внутри ее образуется канал диаметром 0,5 нм, куда могут входить молекулы других соединений, например иода, который окрашивает ее в синий цвет.

Амилопектин — полимер, содержащий от 5000 до 6000 остатков глюкозы. Молекулярная масса до 106. Связи между остатками a-D-глюкопиранозы 1-4a, 1-6а, 1-За. Неразветвленные участки состоят из 25-30 остатков глюкозы. Молекула амилопектина имеет сферическую форму. Амилопектин образует с иодом фиолетовую окраску с красноватым оттенком. В составе крахмала содержится до 0,6 % высокомолекулярных жирных кислот и 0,2-0,7 % минеральных веществ.

В ходе технологической обработки под действием влаги и тепла крахмал, крахмалсодержащее сырье способны адсорбировать влагу, набухать, клейстеризоваться, подвергаться деструкции. Интенсивность этих процессов зависит от вида крахмала, режимов обработки, характера катализатора.

Крахмальные зерна при обычной температуре не растворяются в воде, при повышении температуры набухают, образуя вязкий коллоидный раствор. При его охлаждении образуется устойчивый гель (всем нам хорошо знакомый крахмальный клейстер). Этот процесс получил название клейстеризации крахмала. Крахмалы различного происхождения клейстеризуются при различных температурах (55-80 °С). Способность крахмала набуханию и клейстеризации связана с содержанием амилозной фракции. Под действием ферментов или кислот при нагревании крахмал присоединяет воду и гидролизуется. Глубина гидролиза зависит от условий его проведения и вида катализатора (кислота, ферменты).

В последние годы все более широкое применение в пищевой промышленности находят модифицированные крахмалы, свойства которых в результате разнообразных видов воздействия (физического, химического, биологического) отличаются от свойств обычных крахмалов. Модификация крахмала позволяет существенно изменить его свойства (гидрофильность, способность к клейстеризации, студнеобразование), а следовательно, и направление его использования. Модифицированные крахмалы нашли применение в хлебопекарной и кондитерской промышленности, в том числе для получения безбелковых продуктов питания.

Клетчатка — самый распространенный высокомолекулярный полимер. Это основной компонент и опорный материал клеточных стенок растений. Содержание клетчатки в волосках семян хлопчатника 98 %, древесине — 40-50, зернах пшеницы — 3, ржи и кукурузе — 2,2, сое — 3,8, подсолнечнике с плодовой оболочкой — до 15 %. Молекулы клетчатки с помощью водородных связей объединены в мицеллы (пучки), состоящие из параллельных цепей. Клетчатка нерастворима в воде и при обычных условиях не гидролизуется кислотами. При повышенных температурах при гидролизе образуется в качестве конечного продукта D-глюкоза. В ходе гидролиза постепенно идет деполимеризация крахмала и образование декстринов, затем мальтозы, а при полном гидролизе глюкозы. Деструкция крахмала, которая начинается с набухания и разрушения крахмальных зерен и сопровождается его деполимеризацией (частичной или более глубокой) до образования в качестве конечного продукта глюкозы, происходит при получении многих пищевых продуктов — патоки, глюкозы, хлебобулочных изделий, спирта и т. д.

Гликоген (животный крахмал) состоит из остатков глюкозы. Важный энергетический запасной материал животных (в печени до 10 %, мышцах 0,3-1 % гликогена) присутствует в некоторых растениях, например в зернах кукурузы. По своему строению напоминает амилопектин, но более разветвлен и его молекула имеет более компактную упаковку. Она построена из остатков a-D-глюкопиранозы, связи между ними 1-4а (до 90%), 1-6а (до 10%) и 1-За (до 1 %).

Продукты гидролиза, содержащие клетчатку отходов, которые образуются при переработке древесины, широко используют для получения кормовых дрожжей, этилового спирта и других продуктов.

Ферменты желудочно-кишечного тракта человека не расщепляют целлюлозу, которую относят к балластным веществам. Роль их в питании будет рассмотрена дальше. В настоящее время под действием ферментного комплекса целлюлаз уже в промышленных условиях получают продукты гидролиза клетчатки, в том числе глюкозу. Учитывая, что возобновляемые запасы целлюлозосодержащего сырья практически безграничны, ферментативный гидролиз клетчатки является очень перспективным путем получения глюкозы.

Гемицеллюлозы — это группа высокомолекулярных полисахаридов, образующих совместно с целлюлозой клеточные стенки растительных тканей. Присутствуют главным образом в периферийных оболочечных частях зерна, соломе, кукурузных початках, подсолнечной лузге. Содержание их зависит от сырья и достигает 40% (кукурузные початки). В зерне пшеницы и ржи до 10 % гемицеллюлоз. В их состав входят пентозаны, образующие при гидролизе пентозы (арабинозу ксилозу), гексозаны, гидролг зующиеся до гексоз (манноз, галактоза, глюкоза, фруктоза и группа смешанных полисахаридов, гидролизующихся до пентоз, гексоз и уроновых кислот. Гемицеллюлозы обычно имеют разветвленное строение; порядок расположения моноз внутри полимерной цепи неодинаков. Связь их Друг с другом осуществляется с участием полуацетального гидроксила и гидроксильных групп у 2, 3, 4, 6-го углеродных атомов. Они растворяются в щелочных растворах. Кислотный гидролиз гемицеллюлозы протекает значительно легче, чем целлюлозы. В гемицеллюлозы иногда включают группу агара (смесь сульфированных полисахаридов — агарозы и агаропектина) — полисахарида, присутствующего в водорослях и применяемого в кондитерской промышленности. Гемицеллюлозы широко применяют для получения разнообразных технических, медицинских, кормовых и пищевых продуктов, среди которых необходимо выделить агар и агарозу, ксилит. Гемицеллюлозы относят к группе пищевых волокон, необходимых для нормального пищеварения.

Пектиновые вещества — это группа высокомолекулярных полисахаридов, входящих в состав клеточных стенок и межклеточных образований растений совместно с целлюлозой, гемицеллюлозой, лигнином. Содержится в клеточном соке. Наибольшее количество пектиновых веществ находится в плодах и корнеплодах. Получают их из яблочных выжимок, свеклы, корзинок подсолнечника. Различают нерастворимые пектины (протопектины), которые входят в состав первичной клеточной стенки и межклеточного вещества, и растворимые, содержащиеся в клеточном соке. Молекулярная масса пектина изменяется от 20 ООО до 50 000. Основным структурным компонентом его является галактуроновая кислота, из молекул которой строится главная цепь, а в состав боковых цепей входят 1-арабиноза, D-галактоза и рамноза. Часть кислотных групп этерифицирована метиловым спиртом, часть существует в виде солей. При созревании и хранении плодов нерастворимые формы пектина переходят в растворимые, с этим связано размягчение плодов при созревании и хранении. Переход нерастворимых форм в растворимые происходит при тепловой обработке растительного сырья, осветлении плодово-ягодных соков. Пектиновые вещества способны образовывать гели в присутствии кислоты и сахара при соблюдении определениях соотношений. На этом основано их использование в качестве студнеобразующего вещества в кондитерской и консервной промышленностн для производства мармелада, пастилы, желе и джемов, а также в хлебопечении, сыроделии.

В состав которых зачастую входят три химических элемента: Карбон, Гидроген и Оксиген. Много углеводов кроме этих элементов содержат Фосфор, Сульфур и Нитроген. Данные биополимеры широко распространены в природе. Биосинтез углеводов в растениях осуществляется в результате фотосинтеза. Углеводы составляют около 80-90 % сухой массы растений.

В организме человека концентрация углеводов в пересчете на сухое вещество составляет около 2 % процентов. Углеводы являются основным источником химической энергии для организма. Расщепление углеводов имеет особое значение для функционирования некоторых органов. Например, отдельные органы удовлетворяют свои потребности преимущественно за счет расщепления глюкозы: головной мозг - на 80%, сердце - на 70 - 75%. Углеводы депонируются в тканях организма в виде запасных питательных веществ (гликоген). Некоторые из них выполняют опорные функции участвуют в защитных функциях, задерживают развитие микробов (слизи), является химической основой для построения молекул биополимеров, составными частями макроэргических соединений и т.д.

Классификация углеводов.

Все углеводы делятся на две большие группы: моносахариды или монозы), полисахариды или полиозы), которые состоят из нескольких остатков молекул моносахаридов, связанных между собой.

Классификация углеводов: моносахариды.

Моносахариды, содержащие альдегидную группу, называют альдозами, а те, которые содержат кетонную группу, - кетозами. К простым углеводам относятся альдегидо- и кетоспирты с числом углеродных атомов не менее трех. По числу атомов карбона моноза деляться на триозы, тетрозы, пентозы, гексозы и т.д.

Триозы. Содержатся в тканях и биологических жидкостях в виде эфиров как продукты промежуточного обмена углеводов во время реакций гликолиза и брожения. Тетрозы. Наибольшее значение имеет эритроза, которая содержится в тканях в виде эфира ортофосфорной кислоты - продукта пентозного пути окисления углеводов. Пентозы. Большинство пентоз образуется в пищеварительном тракте человека в результате гидролиза пентозанов овощей и фруктов. Часть пентоз образуется в процессах промежуточного обмена, в частности в пентозном пути. В тканях пентозы находятся в свободном состоянии в виде эфиров ортофосфатнои кислоты, входящих в состав (АТФ), нуклеиновых кислот, коферментов (НАДФ, ФАД) и других важных биосоединений. Особого внимания заслуживают такие пентозы: арабиноза, рибоза, дезоксирибоза, ксилулоза. Гексозы. Встречаются в свободном состоянии, в составе полисахаридов и других соединений. Наиболее важными представителями данного класса углеводов являются глюкоза, фруктоза, галактоза, маноза.

Классификация углеводов: дисахариды.

Дисахариды - это углеводы, молекулы которых при гидролизе расщепляются на две молекулы гексоз. К дисахаридам относятся мальтоза, сахароза, трегалоза, лактоза.

При наименовании дисахаридов обычно пользуются названиями, которые сложились исторически (лактоза, мальтоза, сахароза), реже - рациональными и по номенклатуре IUPAC.

Дисахариды - твердые кристаллические вещества, хорошо растворимые в воде, оптически активные, сладкие на вкус, способные к кислотному или ферментативному гидролизу, могут образовывать эфиры.

Классификация углеводов: гомополисахариды и гетерополисахариды. В состав гомополисахаридов входит значительное количество остатков одного моносахарида: глюкозы, манозы, фруктозы, ксилозы и т.д. Они являются запасными (резервными) питательными веществами для организма (гликоген, инулин, крахмал). Молекулы гетерополисахаридов состоят из большого количества разных моносахаридов.