Фармакокинетика лекарственных средств.

Фармакокинетика – это раздел фармакологии, изучающий судьбу лекарственных средств в организме, то есть всасывание, распределение по органам и тканям, метаболизм и выведение. То есть, путь лекарственного вещества в организме от момента введения до выведения из организма.

Существуют разные пути введения лекарственного средства в организм. Их можно разделить на 2 большие группы: энтеральный (через желудочно-кишечный тракт), парентеральный (минуя желудочно-кишечный тракт). К энтеральным путям введения относят: пероральный (peros– через рот), сублингвальный (под язык), через зонд в желудок и двенадцатиперстную кишку, ректальный (через прямую кишку). К парентеральным путям введения относятся: накожный, внутрикожный, подкожный, внутримышечный, внутривенный, внутриартериальный, внутрисердечный, под оболочки мозга, ингаляционный, интрастернальный (в грудину). Каждый из путей введения имеет свои преимущества и недостатки.

Самый распространенный путь введения – это через рот (пероральный). Этот путь удобный, простой, не требуется стерильность препаратов. Всасывание лекарственного вещества идет частично в желудке, частично в кишечнике. Однако некоторые лекарственные вещества могут разрушаться под действием желудочного сока. В этом случае лекарственное вещество помещают в капсулы, которые не разрушаются желудочным соком. Под языком лекарственное средство всасывается быстро, минует печень и не вступает в контакт с содержимым желудка и кишечника (Нитроглицерин). При ректальном способе введения (суппозитории, клизмы) лекарственное вещество быстро всасывается, частично минуя печень. Однако, далеко не все препараты хорошо всасываются из слизистой прямой кишки, а некоторые препараты могут раздражать слизистые оболочки.

Из парентеральных путей введения чаще используют: под кожу, внутримышечный, внутривенный. Быстрый эффект наступает при внутривенном пути введения. Однако к трудностям парентеральных способов введения относят: болезненность укола, стерильность препаратов и шприцов, необходимость медицинского персонала для проведения инъекций.

Поступив в организм, лекарственное вещество должно всосаться. Всасывание (абсорбция) – это процесс поступления лекарственного вещества в кровеносную или лимфатическую систему из места введения. Основные механизмы всасывания: пассивная диффузия, облегченная диффузия, активный транспорт, пиноцитоз. Факторы, влияющие на всасывание лекарственного вещества при приеме внутрь: растворимость, лекарственная форма, pHжелудка и кишечника, активность ферментов желудочно-кишечного тракта, перистальтика желудочно-кишечного тракта, прием пищи, мальабсорбция, дисбактериоз.

После всасывания лекарственного вещества в кровь оно будет циркулировать там, в «свободной» или «связанной» форме. «Свободная» форма (не связана с белками крови) растворима в водной фазе плазмы крови. Эта форма легко проникает через стенку капилляров в ткани и оказывает фармакологический эффект. «Связанная» форма – это часть лекарственного вещества, которая связана с белками крови (чаще с альбуминами) и неспособна, проникать в ткани. Эта форма представляет собой как бы депо препарата и по мере выведения лекарственного вещества из организма отщепляется от белка и переходит в «свободную» форму. Следовательно: только «свободная» форма лекарственного вещества оказывает фармакологический эффект.

После всасывания в кровь лекарственное вещество подвергается распределению по органам и тканям. Распределение по органам и тканям чаще всего бывает неравномерным. Степень поступления в ту или иную ткань зависит от разных факторов: от молекулярной массы, от растворимости в воде и липидах, от степени диссоциации; от возраста, пола; от массы жировых депо; от функционального состояния печени, почек, сердца; от способности преодолевать гистогематические барьеры.

К гистогематическим барьерам относят: капиллярную стенку, гематоэнцефалический барьер, гематоофтальмический барьер, плацентарный барьер. Капилляры легко проницаемы для лекарственных веществ, так как стенка капилляров имеет широкие поры, через которые легко проходят водорастворимые вещества с молекулярной массой не больше инсулина (5 – 6 кДа). А жирорастворимые вещества диффундируют через мембрану клеток.

Гематоэнцефалический барьер – представляет собой капиллярную стенку, которая является многослойной мембраной (эндотелий, межуточное вещество и глиальные клетки головного и спинного мозга). Такая мембрана лишена пор. Через гематоэнцефалический барьер легко проникают липофильные вещества путем простой диффузии (например, тиопентал натрия – наркозное средство). Для полярных соединений (пенициллины, миорелаксанты) гематоэнцефалический барьер не проницаем. Гематоэнцефалический барьер гипоталамуса, гипофиза отличается повышенной проницаемостью для лекарственных веществ. Проницаемость гематоэнцефалического барьера повышается при менингите, арахноидите, гипоксии, черепно-мозговых травмах. Некоторые лекарственные препараты (кофеин, эуфиллин, лидаза) повышают проницаемость гематоэнцефалического барьера.

Гематоофтальмический барьер отделяет кровь капилляров от внутриглазной жидкости в камерах глаза. В камеры глаза хорошо проходят липофильные препараты.

Плацентарный барьер разделяет кровообращение матери и плода. На ранних стадиях беременности наблюдается большая порозность этого барьера и многие лекарства легко проникают в плод. Затем этот барьер «укрепляется» и приобретает свойства липидной мембраны. Но с 33 – 35-й недели беременности истончается плацента и значительно повышается проницаемость плацентарного барьера. Это создает опасную ситуацию для плода. Не проникают через плацентарный барьер крупномолекулярные вещества (инсулин, полиглюкин), а также гидрофильные ионизированные молекулы: миорелаксанты, ганглиблокаторы.

Следующий этап фармакокинетики – это элиминация лекарственного вещества. Элиминация (от латинского eliminatum– удалять) – удаление лекарств из организма путем биотрансформации и экскреции.

Биотрансформация – это метаболическое превращение лекарств, в результате которых они приобретают полярные группы, то есть уменьшается растворимость в липидах и возрастает растворимость в воде. Полярные метаболиты пригодны к удалению из организма. Для примера хочу сказать, что если бы не было метаболизма, то одна терапевтическая доза снотворного средства этаминала могла бы находиться в организме 100 лет. Биотрансформация лекарств чаще всего (90 – 95%) происходит в печени, реже в слизистой оболочке кишечника, почках, легких, коже, в крови. Наиболее изучен метаболизм лекарств в печени. Метаболизм в печени происходит: либо в эндоплазматическом ретикулуме гепатоцитов с помощью микросомальных оксидаз смешанной функции либо вне эндоплазматического ретикулума (в митохондриях) с помощью немикросомальных ферментов.

Можно выделить 2 фазы биотрансформации. Первая фаза включает 3 реакции:

    окисление

    восстановление

    гидролиз

В процессе этих реакций молекулы субстрата приобретают полярные группы (гидроксильные, аминные и другие), в результате чего метаболиты лекарственных веществ становятся водорастворимыми и пригодными для выведения. Приведу несколько примеров биотрансформации лекарств. Окислению подвергаются: алкоголь, фенобарбитал, морфин, эфедрин, хлорпромазин. Восстановлению подвергаются: пропранолол, хлорамфеникол, нитрофураны. Гидролизируют следующие лекарства: прокаин, новокаинамид, сердечные гликозиды.

Вторая фаза биотрансформации включает реакции конъюгации, (то есть соединения, синтеза). Лекарственное вещество или метаболиты первой фазы связываются с некоторыми эндогенными веществами и образуют различные конъюгаты (соединения) с глюкуроновой кислотой (глюкоронизирование), уксусной кислотой (реакция ацетилирование), сульфатом, глицином, глутатионом, реакция метилирования по кислороду, азоту, сере. Иногда бывает так, то у одного и того же вещества наблюдается несколько этапов конъюгации: вначале (например) с глицином, потом – с глюкуроновой кислотой и так далее. В результате реакций конъюгации образуются водорастворимые вещества, которые быстро выводятся из организма. Примеры типовых реакций конъюгации: ацетилирование (сульфаниламиды, фтивазид, анестезин, прокаин), глюкуронизация (пропранолол, морфин, левомицетин), связывание с сульфатом (метилдофа, фенол), связывание с аминокислотами, с глицином (салициловая кислота, никотиновая кислота), метилирование: по кислороду (дофамин), по азоту (никотинамид), по сере (унитиол).

В результате биотрансформации лекарственные вещества меняют свою биологическую активность. Могут быть следующие варианты изменения их активности: потеря активности (инактивация) – наиболее частый вид, активация – это повышение активности. Например: фталазол после гидролиза превращается в активное вещество – норсульфазол; уротропин превращается в организме в активный формальдегид, витамин Д гидроксилируется в активный диоксивитамин «Д». Модификация основного эффекта, когда в процессе биотрансформации появляются другие свойства. Например, кодеин в организме частично деметилируется и превращается в морфин.

В процессе метаболизма под влиянием лекарственных средств может происходить индукция (усиление) или ингибирование (торможение) активности микросомальных ферментов печени. К препаратам-индукторам относят: фенобарбитал и другие барбитураты, зиксорин, рифампицин, димедрол, бутадион, стероидные гормоны, верошпирон и другие. При курсовом назначении этих препаратов-индукторов их метаболизм ускоряется в 3 – 4 раза К препаратам-ингибиторам метаболизма относят: эритромицин, левомицетин.

Следующий этап фармакокинетики – это выведение (экскреция) лекарственных веществ из организма. Это заключительный этап фармакокинетики. Лекарственные вещества и их метаболиты экскретируются разными путями: почками (чаще всего), через желудочно-кишечный тракт, легкими, кожей, железами (слюнными, потовыми, слезными, молочными).

Механизмы выведения почками: клубочковая фильтрация (пассивный процесс), канальцевая секреция (активный процесс), канальцевая реабсорбция (пассивный процесс). Клубочковой фильтрации подвергаются водорастворимые вещества с молекулярной массой до 5000 дальтон. Они не должны быть связаны с белками плазмы крови. Пример фильтрации – стрептомицин. Канальцевая секреция лекарственных веществ и метаболитов происходит против градиента концентрации с затратой энергии. Могут секретироваться вещества, связанные с белками. Пример секреции: бензилпенициллин (85%). Канальцевая реабсорбция происходит в дистальных отделах канальцев путем пассивной диффузии по градиенту концентрации. Благодаря реабсорбции пролонгируется (удлиняется) действие препарата (фенобарбитал, димедрол, диазепам).

Экскреция с желчью. Многие полярные лекарственные средства, имеющие молекулярную массу 300 и выше, могут выводиться с желчью через мембрану гепатоцитов, а также путем активного транспорта с помощью фермента глютатионтрансферазы. Степень связывания с белками плазмы крови значения не имеет. Неполярные лекарственные средства не экскретируются в желчь, но их полярные метаболиты довольно быстро попадают в желчь. Вместе с желчью лекарственные вещества попадают в кишечник и выделяются с калом. Некоторые препараты могут подвергаться в кишечнике деконъюгации с помощью кишечной микрофлоры. В этом случае эти препараты могут повторно всасываться (например, дигитоксин). Это явление называется энтерогепатическая (печеночно-кишечная) циркуляция.

Экскреция легкими. Некоторые лекарственные вещества могут выделяться частично или полностью через легкие. Это - летучие и газообразные вещества (например, средства для наркоза), этиловый спирт, камфора и другие.

Экскреция грудными железами. Некоторые препараты могут легко проникать в грудные железы и экскретироваться с молоком матери. В молоко легко проникают препараты, хорошо связывающиеся с жиром: теофиллин, левомицетин, сульфаниламиды, ацетилсалициловая кислота, препараты лития. Возможны токсические эффекты проникающих в грудное молоко лекарственных средств на грудного младенца. Особенно опасны: противоопухолевые препараты, препараты лития, изониазид, левомицетин; препараты, вызывающие аллергию (бензилпенициллин).

Экскреция со слюной. Некоторые препараты могут попасть в слюну путем пассивной диффузии. Чем более липофильный препарат, тем легче он проникает в слюну. Если концентрация препарата в слюне корригирует с концентрацией его в плазме крови, то в этих случаях легко определять концентрацию препарата в слюне. Например, антипирин, пармидин. Частично выделяются со слюной: парацетамол, лидокаин, литий, фенацетин, хинидин, теофиллин, пармидин, антипирин, клофелин.

Термины фармакокинетики.

Элиминация – суммарная величина биотрансформации + экскреции. В результате элиминации лекарственное вещество теряет активность (метаболизирует) и выводится из организма.

Квота-элиминация (или коэффициент элиминации) – это суточная потеря препарата, выраженная в процентах к препарату, содержащегося в организме. Квота-элиминация: строфантина 50%, дигитоксина 7%. Эта величина важна для режима дозирования.

Период полувыведения (полужизни, полуэлиминации) – это время, за которое концентрация препарата в плазме крови снижается наполовину (50%). Обозначается: Т½ в часах и минутах. Чем больше Т½, тем медленнее выводится препарат и его реже надо вводить в организм во избежаний побочных явлений. Эта величина зависит от: пути введения препарата, дозы, возраста; функции печени, почек.

Клиренс – это количественная оценка скорости экскреции лекарственных веществ. Почечный клиренс равен объему плазмы крови, который полностью очищается (освобождается) от лекарственного вещества за единицу времени (л/мин, мл/мин).

Общий клиренс – это объем плазмы крови, из которого за единицу времени выводится лекарственное вещество с мочой, желчью, легкими и другими путями. Это суммарная величина.

Важным параметром фармакокинетики является биодоступность лекарственного вещества – это доля введенной внутрь дозы вещества, которая поступает в общий кровоток в активной форме (в процентах). Биодоступность зависит от: полноты всасывания лекарственного вещества, степени инактивации в желудочно-кишечном тракте, интенсивности метаболизма при первичном прохождении через печень.

Вам надо знать 2 термина: первичное прохождение через печень лекарственного вещества, вторичное поступление в печень. «Первичное прохождение лекарственного вещества через печень» (или «метаболизм первого прохождения») применим для лекарственных препаратов, которые всасываются в желудке и тонком кишечнике, так как из этих органов лекарственное вещество попадает в воротную вену (venaeportae), а далее – в печень и только потом поступает в общий кровоток и разносится по органам и тканям. А оттуда лекарственное вещество вновь поступает в печень, где происходит окончательный метаболизм лекарственного вещества, то есть вторичное поступление в печень.

Таким образом, только при приеме лекарственного средства peros, оно дважды поступает в печень. при первом прохождении через печень может начаться метаболизм лекарственного вещества. Кроме того, некоторые лекарственные вещества начинают метаболизировать уже в желудке и кишечнике. весь комплекс процессов, приводящих к инактивации лекарственного вещества до его попадания в общий кровоток называется «пресистемной элиминацией». Биодоступность выражается в процентах. Если лекарственное вещество вводить внутривенно, то биодоступность будет почти всегда 100%. «Объем распределения» (Vd) – это параметр фармакокинетики, который характеризует степень захвата вещества тканями из плазмы крови (л/кг). Эту величину можно использовать для оценки характера распределения препарата в организме, то есть где больше накапливается вещество: в клетке или в межклеточной жидкости. Если объем распределения низкий (менее 1 – 2 л/кг), то большая часть препарата находится в межклеточной жидкости и наоборот. Знание величиныVdпригодится для оказания помощи при передозировке препарата.

  • Возрастные этапы изменения функций сенсорных, моторных и висцеральных систем. Сенсорные особенности организма
  • Выделите из перечисленного этапы статистического исследования.
  • Глава 1. Основные этапы становления и развития неврологии в Медико-хирургической (Военно-медицинской) академии.
  • Глава 13 Рациональное использование лекарственных препаратов. Этапы рациональной фармакотерапии
  • I. Всасывание (абсорбция) - процесс поступления лекарства из места его введения в системный кровоток при внутрисосудистом введении.

    Скорость всасывания зависит от:

    1. Лекарственной формы препарата.

    2. От степени растворимости в жирах или в воде.

    3. От дозы или концентрации.

    4. От пути введения.

    5. От интенсивности кровоснабжения органов и тканей.

    Скорость всасывания при per os применении зависит от:

    1. РН среды в различных отделах ЖКТ.

    2. Характера и объёма содержимого желудка.

    3. От микробной обсеменённости.

    4. Активности пищевых ферментов.

    5. Состояния моторики ЖКТ.

    6. Интервала между приемом лекарства и пищей.

    Процесс всасывания характеризуется следующими фармакокинетическими параметрами:

    1. Биодоступность (f) – относительное количество препарата, которое поступает из места введения в кровь (%).

    2. Константа скорости всасывания (К 01) – это параметр, который характеризует скорость поступления ЛС из места введения в кровь (ч -1 , мин -1).

    3. Период полуабсорбции (t ½ α) – время, необходимое для всасывания из места введения в кровь ½ введенной дозы (ч, мин).

    4. Время достижения максимальной концентрации (t max) – это время, за которое достигается максимальная концентрация в крови (ч, мин).

    Процессы всасывания у детей достигают состояния абсорбции лекарственного уровня взрослых лишь к трём годам жизни. До трех лет абсорбция лекарств снижена главным образом из-за недостатка обсемененности кишечника, а также из-за недостатка желчеобразования. У людей старше 55 лет также снижена всасывательная способность. Им нужно лекарства дозировать с учетом возрастных особенностей.

    II. Биотранспорт – после всасывания лекарств в кровь они вступают в обратное взаимодействие с т.н. транспортными белками, к которым относятся белки сыворотки крови.

    Подавляющее число лекарства (90%) вступает в обратимые взаимодействия с человеческим сывороточным альбумином. А также взаимодействует с глобулинами, липопротеидами, гликопротеидами. Концентрация связанной с белком фракции соответствует свободной, т.е.: [С связ ] = [С своб ].

    Фармакологической активностью обладает лишь свободная, несвязанная с белком фракция, а связанная является своего рода резервом препарата в крови.

    Связанная часть ЛС транспортным белком определяет:

    1. Силу фармакологического действия лекарства.

    2. Продолжительность его действия.

    Места связывания белка являются общими для многих веществ.

    Процесс обратимого взаимодействия лекарств с транспортными белками характеризуется следующими фармакокинетическими параметрами:

    1. К асс (ЛС + белок) – характеризует степень сродства или силу обратимого взаимодействия препарата с белком сыворотки крови (моль -1).

    2. N – показатель, который свидетельствует о количестве мест фиксации на молекуле белка для молекулы конкретного препарата.

    III. Распределение лекарств в организме.

    Как правило, лекарства в организме распределяются по органам и тканям неравномерно с учетом их тропности (сродства).

    На характер распределения лекарств в организме влияют следующие факторы:

    1. Степень растворимости в липидах.

    2. Интенсивность регионарного или местного кровоснабжения.

    3. Степень сродства к транспортным белкам.

    4. Состояние биологических барьеров (стенок капилляров, биомембран, гематоэнцефалических и плацентарных).

    Основными местами распределения ЛС в организме являются:

    1. Внеклеточная жидкость.

    2. Внутриклеточная жидкость.

    3. Жировая ткань.

    Параметры:

    1. Объем распределения (Vd) - степень захвата ЛС тканями из крови (л, мл).


    IV. Биотрансформация.

    Один из центральных этапов фармакокинетики и основной путь детоксикации (обезвреживания) ЛС в организме.

    В биотрансформации принимают участие:

    5. Плацента

    Биотрансформация осуществляется в 2 фазы.

    Реакции 1 фазы:

    Гидроксилирование, окислительно-восстановтиельные реакции, дезаминарование, дезалкилирование и т.д. В процессе реакций этой фазы происходит изменение структуры молекулы препарата так, что он становится более гидрофильным. Это обеспечивает более легкую экскрецию из организма с мочой.

    Реакции I фазы осуществляются с помощью ферментов эндоплазматического ретикулума (микросомальные или ферменты монооксигеназной системы, основным из которых является цитохром Р450). Лекарства могут как усиливать, так и уменьшать активность этого фермента. ЛС, прошедшие I фазу, структурно подготовлены к реакциям II фазы.

    В процессе реакций II фазы образуются коньюгаты или парные соединения препарата с одним из эндогенных веществ (например, с глюкуроновой кислотой, глутатионом, глицином). Образование коньюгатов происходит при каталитической активности одного из одноименных ферментов, например (препарат +глюкуроновая кислота – образуется при помощи глюкуронидтрансферазы). Образовавшиеся коньюгаты являются фармакологически неактивными веществами и легко выводятся из организма с одним из экскретов. Однако не вся введенная доза ЛС подвергается биотрансформации, часть её выводится в неизмененном виде.

    Дата добавления: 2014-11-24 | Просмотры: 2724 | Нарушение авторских прав


    | | | 4 |

    Фармакокинетика раздел фармакологии, изучающий процессы поступления, распределения, изменения и выведения лекарственных веществ из организма.

    Действие лекарственных веществ невозможно без их распределения в тканях после поступления в общий кровоток. В организм вещество может попасть через защитные барьеры, кожу, пищеварительный тракт, дыхательные пути или в результате нарушения их целостности (подкожная, внутримышечная, внутривенная, внутриполостная инъекция). Поступая в систему кровообращения, а затем в различные клетки, лекарственные вещества преодолевают клеточные мембраны. Этот процесс осуществляется путем пассивной или активной диффузии.

    Основные механизмы абсорбции лекарственных веществ представлены на рис. 2.6.

    Простая диффузия , или пассивный транспорт , обусловлена различиями в концентрации веществ по обе стороны мембраны. Этот процесс характеризуется перемещением молекул вещества из пространства с высокой концентрацией в область, где концентрация веществ низкая или отсутствует. При этом скорость транспорта пропорциональна градиенту концентрации по обе стороны мембраны и достигает равновесия, когда концентрация веществ выравнивается.

    Вещества, растворимые в жирах, проникают через бимолекулярный липидный слой. Через гидрофильный поляризованный слой клеточной мембраны могут проникнуть водорастворимые вещества.

    Фильтрация через поры зависит от гидростатического и осмотического давления. Диаметр пор в мембране эпителия кишечника составляет примерно 0,4 нм, через них проникает вода, мелкие гидрофильные молекулы (мочевина).

    Рис. 2.6.

    кружки – молекулы ЛВ, стрелкой указано направление движения молекул ЛВ

    Некоторые лекарственные вещества всасываются путем активного транспорта . В этом процессе участвуют транспортные системы клеточных мембран, характеризующиеся избирательностью к определенным соединениям, возможностью транспорта против градиента концентраций, конкуренцией двух веществ за один транспортный механизм, затратой энергии насыщаемостью при высоких концентрациях. Так всасываются гидрофильные полярные молекулы, ионы, сахара, аминокислоты.

    При пиноцитозе образуются пузырьки (вакуоли) с захваченными крупными молекулами вещества.

    Скорость наступления эффекта, выраженность, продолжительность действия ЛС во многом определяют путь введения.

    ЛС может быть введено энтерально и парентерально. Разновидностями энтеральных путей введения являются пероральный, ректальный и введение под язык. Парентеральные пути введения – подкожный, внутримышечный, внутривенный, субарахноидальный, ингаляционный.

    Пероральный путь введения (через рот) является наиболее распространенным.

    Основной механизм всасывания в тонком кишечнике – пассивная диффузия, незначительную роль играет активный транспорт, фильтрация практически не имеет значения, всасывание белков, витамина В12 осуществляются путем пиноцитоза.

    Преимущества перорального пути введения – простота и удобство, однако у больных в бессознательном состоянии, при неукротимой рвоте, а также применении некоторых веществ, разрушающихся соляной кислотой, ферментами желудка и кишечника или же плохо проникающих через мембрану клеток эпителия желудочно-кишечного тракта, данный способ введения невозможен. Действие препаратов при пероральном приеме наступает не сразу, а через 15–30 мин, что непригодно в случаях неотложной терапии.

    Лекарственные препараты в основном назначают натощак, чтобы предотвратить взаимодействие с пищей, исключение составляют вещества, оказывающие раздражающее действие, их назначают после еды. Если препарат разрушается желудочным соком или оказывает раздражающее действие на слизистую оболочку желудка, его назначают в капсулах, растворяющихся в тонком кишечнике. Для пролонгирования эффекта применяют капсулы, наполненные гранулами с разной толщиной оболочки (спансулы).

    При введении лекарств ректально (в прямую кишку) в суппозиториях или лекарственных клизмах действие наступает быстрее, чем при приеме внутрь. Лекарственное вещество попадает в кровь, минуя печень, этот путь введения выбирают, когда хотят избежать действия препарата на печень или если лекарство разрушается в печени.

    Основные пути введения лекарств представлены на рис. 2.7.

    Всасывание лекарственных веществ при введении внутрь представлено на рис. 2.8.

    При введении вещества под язык – сублингвально – лекарства через несколько минут попадают в кровь, минуя печень. Этим путем пользуются редко, так как всасывающая поверхность подъязычной области мала. Под язык можно назначать только очень активные вещества, применяемые в малых количествах.

    Введение лекарства подкожно (в подкожную жировую клетчатку) осуществляется с помощью шприца или безыгольного инъектора. Лекарство должно быть стерильным, нельзя вводить раздражающие вещества, гипертонические растворы. Действие препаратов развивается через 5–15 мин. Подкожные инъекции применяют, если нельзя использовать вещество энтерально, для достижения более быстрого эффекта.

    При введении внутримышечно лекарственные вещества всасываются в кровь несколько быстрее и более полно, чем при подкожном введении. Стерильные масляные растворы, суспензии приводят к возникновению в мышце депо, из которого лекарственное вещество поступает в кровь длительное время.

    При внутривенном введении все лекарственное вещество сразу поступает в кровь, что обеспечивает точность дозировки и скорость действия. Стерильные водные растворы вводят в вену медленно, иногда в течение нескольких минут, при капельном введении – до нескольких часов, чтобы не создавать в крови сразу чрезмерной концентрации вводимого вещества, которая может быть опасна для деятельности сердца и ЦНС.

    Ингаляционным путем введения можно вдыхать газообразные ЛС, пары летучих жидкостей, аэрозоли (взвеси в воздухе мельчайших частиц растворов).

    Рис. 2.7. Пути введения лекарств

    Рис. 2.8. Всасывание лекарственных веществ при введении внутрь

    Путь лекарственного вещества в организме представлен на рис. 2.9.

    Рис. 2.9.

    Попадая в кровь, лекарственные препараты распространяются по всему организму, за исключением ЦНС, которую отделяет от системы крови специальный биологический барьер, называемый гематоэнцефалическим. Этот барьер образован дополнительным слоем специальных клеток, окружающих капилляры мозга. Через этот барьер проникают не все лекарственные вещества. Поэтому при заболеваниях мозга (например, менингитах) бензилпенициллин и стрептомицин вводят через оболочки мозга непосредственно под паутинную (арахноидальную) оболочку – субарахноидально .

    Нанесение лекарственных средств на поверхность кожи или слизистых оболочек используется для получения локального (местного) эффекта. Однако некоторые вещества при нанесении их на слизистые оболочки носа, глаза и даже на кожу, могут всасываться и вызывать системное действие. Например, длительное применение кортикостероидных мазей приводит к возникновению побочных эффектов, подобным таковым при системном приеме препаратов. В настоящее время используются и лекарственные пленки, обеспечивающие медленное и длительное всасывание лекарственного вещества, за счет чего пролонгируется их эффект (нитроглицерин).

    Электрофорез это метод, при котором на организм человека одновременно воздействуют электрический ток и вводимое им лекарственное вещество.

    Проблема повышения биодоступности лекарственных средств последнее время все чаще решается методами нанофармакологии и внедрением новых нанотехнологичных систем доставки. Нанотехнологии – это область научного знания, направленная на решение технологических проблем, связанных с частицами в диапазоне от 1 до 100 нм. При уменьшении размера изучаемого объекта до масштабов 100 нм и менее на смену классическим физическим законам взаимодействия между атомами и молекулами приходят квантовые, например, туннельные переходы и поверхностный плазменный резонанс. Система, имеющая размеры нанометрового диапазона, может быть описана с позиции термодинамики нелинейных процессов. Суммарный эффект нанотехнологий в фармакологии – это принципиально новый подход, который состоит из следующих составляющих компонентов:

    • 1) лекарственные средства применяются в дозах, которые значительно меньше, чем известные фармакопейные;
    • 2) препарат упакован или связан с мембраной наноструктуры и в таком виде достигает органа-мишени;
    • 3) метаболическая трансформация препарата замедляется, и он оказывает более длительное и сильное действие в организме больного;
    • 4) деградация наноструктуры происходит не сразу, а в течение определенного времени, это еще более продлевает действие препарата в организме больного;
    • 5) наноструктура сама по себе обладает биологической активностью, так как размер и заряд наноструктуры (липосомы, фуллерены и др.) влияют на энергию связей и взаимодействие с клеточными и молекулярными структурами;
    • 6) фармакокинетические параметры для каждого конкретного препарата, упакованного в наноструктуры, значительно изменяются.

    Наиболее распространенной в настоящее время системой для целевой доставки лекарств являются липосомы. Липосомы нетоксичны и неиммуногенны, не вызывают гемолиза даже при повторных инъекциях, они биосовместимы и биоразлагаемы.

    Современные системы направленной доставки лекарств – drug delivery systems (DDS ) – липосомы, снабженные "молекулярным компасом" (антителами, помогающими найти пораженный орган).

    Вопросы практики

    Липосомы представляют собой коллоидные, везикулярные структуры, состоящие из одного или нескольких бислоев, окружающих равное количество водных отсеков. Проблемами при использовании липосом в естественных условиях является их поглощение ретикулоэндотелиальной системой в организме и их относительно низкая стабильность в пробирке. Для борьбы с этим к поверхности липосом могут быть добавлены молекулы полиэтиленгликоля. Доступный препарат липосомальной структуры – амбизом (амфотерицин В).

    Нанотехнологии позволяют проводить микроскопически точные операции но деструкции патологических очагов. Адресная доставка лекарств с помощью моноклональных антител позволяет значительно улучшить качество жизни онкологических больных за счет снижения побочных эффектов, а также повысить избирательность, следовательно, и эффективность лечения . Для этого в организм вводятся наночастицы металла с фиксированными на них лекарствами и антителами. При помощи специфических антител наноструктуры, выполняющие роль "молекулярного компаса", безошибочно опознают мишени для воздействия на патологически измененные клетки, присоединяются к ним благодаря реакции "антиген – антитело" и разрушают их с помощью транспортируемого лекарства (антибластомные антибиотики).

    Нанонейрофармакология предполагает применение лекарств в новых лекарственных формах – наноструктурах нейротропного действия, которые обладают свойствами корригировать функцию ЦНС (липосомы, фуллерены, дендримеры, нанокластеры, нанотрубки и др.). Разработана методика биохимического синтеза наночастиц металлов (Ag, Au, Сu, Zn, Со, Ni и др.). Стандартизированные наночастицы (15 нм) сохраняют свою стабильность на воздухе в течение длительного времени и могут использоваться в мицеллярных и водных растворах. При этом они приобретают высокие антимикробные, каталитические и другие полезные свойства.

    Характеристика наночастиц представлена в табл. 2.3.

    Таблица 2.3

    Характеристика наночастиц

    Название

    Структура

    Размер, нм

    Фармакодинамика

    Фармакокинетика

    1. Фуллерен

    Углеродные

    Антиоксидант, антибластомное действие

    Повышает проницаемость мембран клеток, проникает через гистогематические барьеры и клеточные мембраны

    2. Дендример

    Ветвистое строение

    Антибластомное действие

    Транспортеры лекарств

    3. Нанотрубки

    Карбоновые, фосфолипидные

    Антиоксиданты, антибластомное действие

    Замыкаются в липосомы при самосборке

    4. Липосомы

    Фосфолипидные

    Антиагреганты, антиоксиданты

    Повышают биодоступность, транспортируют лекарства

    5. Нано-кластеры

    Кремнезем, сафлоровое масло

    Структурируют воду, повышают синтез АТФ, антиоксиданты

    Усиливают комплементарность к лекарствам, ускоряют биохимические процессы и метаболизм лекарств

    Фармакокинетика («человек – лекарство») - изучает влияние организма на лекарственное вещество, пути его поступления, распределения, биотрансформации и выведения лекарств из организма. Физиологические системы организма в зависимости от их врожденных и приобретенных свойств, а также способов и путей введения лекарственных пре­паратов будут в разной степени изменять судьбу лекарствен­ного вещества. Фармакокинетика лекарственного вещества зависит от пола, возраста и характера заболевания.

    Основным интегральным показателем для суждения о судьбе лекарственных веществ в организме является опреде­ление концентрации этих веществ и их метаболитов в жидкостях, тканях, клетках и клеточных органеллах.

    Длительность действия препаратов зависит от его фармакокинетических свойств. Период полувыведения - время, необходимое для очищения плазмы крови от лекарственного вещества на 50%.

    Этапы (фазы) фармакокинетики. Движение лекарственного вещества и изменение его молекулы в организме представляет собой ряд последовательных процессов всасывания, рас­пределения, метаболизма и экскреции (выведения) лекарственных средств. Для всех этих процессов необходимым условием служит их про­никновение через клеточные оболочки.

    Прохождение лекарственных веществ через клеточные оболочки.

    Проникновение лекарственных веществ через оболочки клеток регулируется естественными процессами диффузии, фильтрации и активного транспорта.

    Диффузия основана на естественном стремлении любого вещества двигаться из области высокой концентрации в направлении к области более низкой концентрации.

    Фильтрация . Водные каналы в местах тесного соединения прилегающих эпителиальных клеток пропускают через поры толь­ко некоторые водорастворимые вещества. Нейтральные или не­заряженные (т. е. неполярные) молекулы проникают быстрее, так как поры обладают электрическим зарядом.

    Активный транспорт - этот механизм регулирует движение некоторых лекарственных веществ в клетки или из них против концентрационного градиента. Для реализации этого процесса требуется энергия, и он происходит быстрее, чем перенос веществ путем диффузии. Молекулы со сходным строением конкурируют за молекулы-переносчики. Механизм активного транспорта вы­сокоспецифичен для определенных веществ.

    Некоторые органные особенности клеточных мембран.

    Мозг и спинномозговая жидкость. Капилляры в мозге отлича­ются от большинства капилляров других участков организма тем, что их эндотелиальные клетки не имеют пространств, через ко­торые вещества проникают во внеклеточную жидкость. Тесно примыкающие друг к другу эндотелиальные клетки капилляров, соединенные с базальной мембраной, а также тонкий слой отростков астроцитов препятствуют контакту крови с мозговой тканью. Этот гематоэнцефалический барьер предотвращает проникновение некоторых веществ из крови в мозг и спинномозговую жидкость (СМЖ). Жиронерастворимые вещества через этот барьер не проникают. Напротив, жирорастворимые вещества легко проникают через гематоэнцефалический барьер.


    Плацента . Хорионические ворсины, состоящие из слоя трофобластов, т.е. клеток, окружающих капилляры плода, погру­жены в материнскую кровь. Кровоток беременной и плода разделены барьером, осо­бенности которого те же, что у всех липидных мембран организма, т.е. он проницаем только для жирорастворимых веществ и не­проницаем для веществ, растворимых в воде (особенно если их относительная молекулярная масса (ОММ) превышает 600). Кроме того, плацента содержит моноаминоксидазу, холинэстеразу и систему микросомальных фер­ментов (сходную с таковой в печени) способную метаболизировать лекарственные вещества и реагирующую на препараты, которые принимает беременная.

    Всасывание - процесс поступления лекарства из места введения в кровеносное русло. Независимо от пути введения скорость всасывания препарата определяется тремя факторами: а) лекарственной формой (таб­летки, свечи, аэрозоли); б) растворимостью в тканях; в) крово­током в месте введения.

    Существует ряд последовательных этапов всасывания лекарственных средств через биологические барьеры:

    1) Пассивная диффузия . Таким путем проникают хорошо раство­римые в липоидах лекарственные вещества. Скорость всасывания определяется разностью его концентрации с внешней и внутренней стороны мембраны;

    2) Активный транспорт . В этом случае перемещение веществ че­рез мембраны происходит с помощью транспортных систем, содер­жащихся в самих мембранах;

    3) Фильтрация . Вследствие фильтрации лекарства проникают через поры, имеющиеся в мембранах (вода, некоторые ионы и мел­кие гидрофильные молекулы лекарственных веществ). Интенсив­ность фильтрации зависит от гидростатического и осмотического давления;

    4) Пиноцитоз. Процесс транспорта осуществляется посредством образования из структур клеточных мембран специальных пузырьков, в которых заключены частицы лекарственного вещества. Пузырьки перемещаются к противоположной стороне мембраны и высвобождают свое содержимое.

    Распределение. После введения в кровеносное русло лекарственное вещество распределяется по всем тканям организма. Распределение лекарственного ве­щества определяется его растворимостью в липидах, качеством свя­зи с белками плазмы крови, интенсивностью регионарного крово­тока и другими факторами.

    Значительная часть лекарства в первое время после всасывания попадает в те органы и ткани, которые наи­более активно кровоснабжаются (сердце, печень, легкие, почки).

    Многие естественные вещества циркулируют в плазме частично в свободном виде, а частично в связанном состоянии с белками плазмы . Ле­карственные средства также циркулируют как в связанном, так и в свободном состоянии. Важно, что фармакологически активна только свободная, несвязанная фракция препарата, а связанная с протеином представляет собой биологически неактивное со­единение. Соединение и распад комплекса препарата с белком плазмы происходят как правило быстро.

    Метаболизм (биотрансформация ) - это комплекс физико-химических и биохими­ческих превращений, которым подвергаются лекарственные вещества в орга­низме. В результате образуются метаболиты (водорастворимые вещества), которые лег­ко выводятся из организма.

    В результа­те биотрансформации вещества приобретают большой заряд (ста­новятся более полярными) и как следствие большую гидрофильность, т. е. растворимость в воде. Подобное изменение химической структуры влечет за собой изменение фармакологических свойств (как правило, уменьшение активности), скорости выделения из организма.

    Это происходит по двум основным направлениям : а) снижение растворимости препаратов в жирах и б) сниже­ние их биологической активности.

    Этапы метаболизма: Гидроксилирование. Диметилирование. Окисление. Образование сульфоксидов.

    Выделяют два типа метаболизма лекар­ственных препаратов в организме:

    Несинтетические реакции метаболизма лекарств, осуществляемые ферментами. К несинтетическим реакциям относится окисление, восстанов­ление и гидролиз. Они разделяют на катализируемые ферментами лизосом клеток (микросомальные) и катализируемые ферментами другой локализации (немикросомальные).

    Синтетичес­кие реакции , которые реализуются с помощью эндогенных субстратов. В основе этих реакций лежит конъ­югация лекарственных препаратов с эндогенными субстратами (глюкуроновая кислота, глицин, сульфаты, вода и др.).

    Биотрансформация препаратов происходит главным образом в печени , однако она осуществляется также в плазме крови и в других тканях . Интенсивные и многочис­ленные реакции метаболизма протекают уже в стенке кишечника.

    На биотрансформацию влияют заболевания печени, характер питания, половые особенности, возраст и ряд других факторов. При поражении печени усиливается токсическое действие многих лекарственных веществ на централь­ную нервную систему и резко возрастает частота развития энцефа­лопатии. В зависимости от тяжести заболевания печени, некоторые лекарственные препараты применяются с осторожностью или они вовсе противопоказаны (барбитураты, наркотические анальгетики, фенотиазины, андрогенные стероиды и др.).

    Клинические наблюдения показали, что эффективность и пере­носимость одних и тех же лекарственных веществ у различных боль­ных неодинакова. Эти отличия определяются генетическими фак­торами , детерминирующими процессы метаболизма, рецепции, иммунного ответа и др. Изучение генетических основ чувствитель­ности организма человека к лекарственным веществам составляет предмет фармакогенетики . Проявляется это чаще всего недостаточностью ферментов, катализирующих биотрансформацию препаратов. Атипичные реакции могут проявляться и при наслед­ственных нарушениях обмена веществ.

    Синтез ферментов находится под строгим генетическим контролем. При мутации соответствующих генов возникают наследственные нарушения структуры и свойств ферментов - ферментопатии. В за­висимости от характера мутации гена изменяется скорость синтеза фермента или синтезируется атипичный фермент.

    Среди наследственных дефектов ферментных систем часто встре­чается недостаточность глюкозо-6-фосфатдегидрогенезы (Г-6-ФДГ). Она проявляется массивным разрушением эритроцитов (гемолити­ческие кризы) при применении сульфаниламидов, фуразолидона и других препаратов. Кроме того, люди с недостаточностью Г-6-ФДР-чувствительны к пищевым продуктам, содержащим конские бобы, крыжовник, красную смородину. Существуют больные с недоста­точностью ацетилтрансферазы, каталазы и других ферментов в орга­низме. Атипичные реакции на лекарственные средства при наслед­ственных нарушениях обмена веществ встречаются при врожденной метгемоглобинемии, порфирии, наследственных негемолитических желтухах.

    Элиминация . Различают несколько путей выведения (экскреции ) лекарствен­ных веществ и их метаболитов из организма: с калом, мочой, выдыхаемым воздухом, слюнными, потовыми, слезными и молочными железами .

    Элиминация почками . Экскреция лекарственных веществ и их метаболитов почками происходит с участием нескольких фи­зиологических процессов:

    Клубочковая фильтрация. Скорость, с которой вещество переходит в клубочковый фильтрат, зависит от его концентрации в плазме, ОММ и заряда. Вещества с ОММ более 50 000 не попадают в клубочковый фильтрат, а с ОММ менее 10 000 (т. е. практически большинство лекарственных веществ) фильтруются в почечных клубочках.

    Экскреция в почечных канальцах . К важным механизмам экскреторной функции почек относится способность клеток проксимальных почечных канальцев активно переносить заряженные (катионы и анионы) молекулы из плазмы в канальцевую жидкость.

    Почечная канальцевая реабсорбция . В клубочковом фильтрате концентрация лекарственных веществ та же, что и в плазме, но по мере продвижения по нефрону он кон­центрируется с увеличением концентрационного градиента, поэто­му концентрация препарата в фильтрате превышает его кон­центрацию в крови, проходящей через нефрон.

    Элиминация через кишечник .

    После приема препарата внутрь для системного действия часть его, не абсорбируясь, может экскретироваться с каловыми массами. Иногда внутрь принимают лекарственные средства, специально не предназначенные для аб­сорбции в кишечнике (например, неомицин). Под влиянием ферментов и бакте­риальной микрофлоры желудочно-кишечного тракта лекарствен­ные препараты могут превращаться в другие соединения, которые вновь могут доставляться в печень, где и проходит новый цикл.

    К важнейшим механизмам, способствующим активному тран­спорту препарата в кишечник, относится билиарная экскреция (печенью). Из печени с помощью активных транспортных систем лекарствен­ные вещества в виде метаболитов или, не изменяясь, поступают в желчь, затем в кишечник, где и выводятся с калом .

    Степень выведения лекарственных веществ печенью следует учитывать при лечении больных, страдающих болезнями печени и воспалительными заболеваниями желчных путей.

    Элиминация через легкие . Легкие служат основным путем введения и элиминации летучих анестезирующих средств. В дру­гих случаях медикаментозной терапии их роль в элиминации невелика.

    Элиминация лекарственных веществ грудным молоком . Лекарственные вещества, содержащиеся в плазме кормящих жен­щин, экскретируются с молоком; их количества в нем слишком малы для того, чтобы существенным образом влиять на их элими­нацию. Однако иногда лекарственные средства, попадающие в организм грудного ребенка, могут оказывать на него существенное воздействие (снотворные, анальгетики и др.).

    Клиренс позволяет определить выведение лекарственного ве­щества из организма. Термином «почечный клиренс кре­атинина » определяют выведение эндогенного креатинина из плаз­мы. Большинство лекарственных веществ элиминируется либо че­рез почки, либо через печень. В связи с этим общий клиренс в организме представляет собой сумму печеночного и по­чечного клиренса, причем печеночный клиренс рассчитывают путем вычитания значения почечного клиренса из общего клиренса организма (снотворные, анальгетики и др.).

    Всасывание (абсорбция) - есть преодоление барьеров, разделяющих место введения лекарства и кровяное русло.

    Для каждого лекарственного вещества определяется специальный показатель – биодоступность . Она выражается в процентах и характеризует скорость и степень всасывания ЛС с места введения в системный кровоток и накопление в крови в терапевтической концентрации.

    В фармакокинетике лекарственных препаратов выделяют четыре основных этапа.

    Этап - всасывание.

    В основе всасывания лежат следующие основные механизмы:

    1. Пассивная диффузия молекул, которая идет в основном по градиенту концен­трации. Интенсивность и полнота всасывания прямо пропорциональны липофильности, то есть, чем больше липофильность, тем выше способность вещества всасываться.

    2. Фильтрация через поры клеточных мембран. Этот механизм задействован только при всасывании низкомолекулярных соединений, размер которых не превышает размер клеточных пор (вода, многие катионы). Зависит от гидростатического давления.

    3. Активный транспорт обычно осуществляется с помощью специальных транспортных систем, идет с затратой энергии, против градиента концентрации.

    4. Пиноцитоз характерен лишь для высокомолекулярных соединений (полимеров, полипептидов). Происходит с образованием и прохождением везикул через клеточные мембраны.

    Всасывание лекарственных веществ может осуществляться этими механиз­мами при различных путях введения (энтеральных и парентеральных), кроме внутривенного, при котором препарат сразу поступает в кровоток. Кроме того, перечисленные механизмы участвуют в распределении и выведении лекарств.

    Этап - распределение.

    После попадания лекарственного вещества в кровь, оно разносится по всему организму и распределяется в соответствии со своими физико-химическими и биологическими свойствами.

    В организме есть определенные барьеры, регулирующие проникновение веществ в органы и ткани: гематоэнцефалический (ГЭБ), гематоплацентарный (ГПБ), гематоофтальмологический (ГОБ) барьеры.

    3 этап - метаболизм (превращение). Существуют два основных пути метаболизма лекарственных веществ:

    ü биотрансформация , происходит под дей­ствием ферментов - окисление, восстановление, гидролиз.

    ü конъюгация , при которой происходит присоединение к молекуле вещества остатков других молекул, с образованием неактивного комплекса, легко выводимого из организма с мочой или калом.

    Эти процессы влекут за собой инактивацию или разрушение лекарственных веществ (детоксикацию), образование менее активных соединений, гидрофильных и легко выводимых из организма.

    В ряде случаев лекарственный препарат становится активным лишь после реакций метаболизма в организме, то есть он является пролекарством , превращающимся в лекарство только в организме.

    Главная роль в биотрансформации принадлежит микросомальным ферментам печени.

    4 этап - выведение (экскреция) . Лекарственные вещества через определенное время выводятся из организма в неизмененном виде или в виде метаболитов.

    Гидрофильные вещества выделяются почками. Таким способом выделяется большинство ЛС.

    Многие липофильные лекарственные вещества выводятся через печень в составе желчи, поступающей в кишечник. Выделившиеся в кишечник с желчью ЛС и их метаболиты могут выделиться с калом, повторно всосаться в кровь и снова через печень выделится с желчью в кишечник (энтерогепатическая циркуляция).

    Лекарственные вещества могут выводиться через потовые и сальные железы (йод, бром, салицилаты). Летучие лекарственные вещества выделяются через легкие с выдыхаемым воздухом. Молочные железы выделяют с молоком различные соединения (снотворные, спирт, антибиотики, сульфаниламиды), что следует учитывать при назначении лекарственного средства кормящим женщинам.

    Элиминация - процесс освобождения организма от лекарственного вещества в результате инактивации и выведения.

    Общий клиренс ЛС (от англ. сlearance – очистка) – объем плазмы крови, очищаемый от ЛС за единицу времени (мл/мин) за счет выведения почками, печенью и другими путями.

    Период полувыведения (Т 0,5) – время, в течение которого концентрация активного лекарствен­ного вещества в крови снижается в два раза.

    Фармакодинамика

    изучает локализацию, механизмы действия ЛС, а также изменения в деятельности органов и систем организма под влиянием лекарственного вещества, т.е. фармакологические эффекты.

    Механизмы действия ЛС

    Фармакологический эффект - воздействие лекарственного вещества на организм, вызывающее изменения в деятельности определенных органов, тканей и систем (усиление работы сердца, устранение спазма бронхов, понижение или повышение артериального давления и т.д.).

    Способы, которыми лекарственные вещества вызывают фармакологические эффекты, определяются как механизмы действия лекарственных веществ.

    Лекарственные вещества взаимодействуют со специфическими рецепторами клеточных мембран, через которые осуществляется регуляция деятельности органов и систем. Рецепторы – это активные участки макромолекул, с которыми специфически взаимодействуют медиаторы или гормоны.

    Для характеристики связывания вещества с рецептором используется термин аффинитет.

    Аффинитет определяется как способность вещества связываться с рецептором, в результате чего происходит образование комплекса «вещество-рецептор».

    Лекарственные вещества, стимулирующие (возбуждающие) эти рецепторы и вызывающие такие эффекты, как и эндогенные вещества (медиаторы), получили название миметиков, стимуляторов или агонистов . Агонисты благодаря сходству с естественными медиаторами стимулируют рецепторы, но действуют более продолжительно в связи с их большей устойчивостью к разрушению.

    Вещества, связывающиеся с рецепторами и препятствующие действию эндогенных веществ (нейромедиаторов, гормонов) называются блокаторами, ингибиторами или антагонистами.

    Во многих случаях действие ЛС связано с их влияниями на ферментные системы или отдельные ферменты;

    Иногда лекарственные средства угнетают транспорт ионов через клеточные мембраны или стабилизируют клеточные мембраны.

    Ряд веществ влияют на метаболические процессы внутри клетки, а также проявляют другие механизмы действия.

    Фармакологическая активность ЛС – способность вещества или комбинации нескольких веществ изменять состояние и функции живого организма.

    Эффективность ЛС – характеристика степени положительного влияния ЛС на течение или продолжительность заболевания, предотвращение беременности, реабилитацию больных путем внутреннего или внешнего применения.