В пространстве, окружающем заряд, который является источником, прямо пропорционально количеству этого заряда и обратно квадрату расстояние от этого заряда. Направление электрического поля согласно принятым правилам всегда от положительного заряда в сторону отрицательного заряда. Это можно представить как если поместить пробный заряд в область пространства электрического поля источника и этот пробный заряд будет либо отталкиваться, либо притягиваться (в зависимости от знака заряда). Электрическое поле характеризуется напряженностью , которое являясь векторной величиной может быть представлено графически в виде стрелки имеющей длину и направление. В любом месте направление стрелки указывает направление напряженности электрического поля E , или просто - направление поля, а длина стрелки пропорциональна численной величине напряженности электрического поля в этом месте. Чем дальше область пространства от источника поля (заряда Q ), тем меньше длина вектора напряженности. Причем длина вектора уменьшается при удалении в n раз от некоего места в n 2 раз, то есть обратно пропорционально квадрату.

Более полезным средством визуального представления векторного характера электрического поля является использование такого понятия как , или просто - силовые линии. Вместо того, чтобы изображать бесчисленные векторных стрелки в пространстве, окружающие заряд-источник, оказалось полезным объединить их в линии, где сами вектора являются касательными к точкам на таких линиях.

В итоге с успехом для представления векторной картины электрического поля применяют силовые линии электрического поля , которые выходят из зарядов положительного знака и заходят в заряды отрицательного знака, а также простираются до бесконечности в пространстве. Такое представление позволяет увидеть умом невидимое человеческому глазу электрическое поле . Впрочем, такое представление удобно также и для гравитационных сил и любых других бесконтактных дальнодействующих взаимодействий.

Модель электрических силовых линий включает в себя бесконечное их количество, но слишком высокая плотность изображения силовых линий снижает возможность чтения узоров поля, поэтому их число ограничивается удобочитаемостью.

Правила рисования силовых линий электрического поля

Есть множество правил составления таких моделей электрических силовых линий. Все эти правила созданы для того, чтобы сообщить наибольшую информативность при визуализации (рисовании) электрического поля . Один из способов - это изображение силовых линий. Один из самых распространенных способов - это окружить более заряженные объекты большим количеством линий, то есть большей плотностью линий. Объекты с большим зарядом создают более сильные электрические поля и потому плотность (густота) линий вокруг них больше. Чем ближе к заряду источнику, тем выше плотность силовых линий, и чем больше величина заряда, тем гуще вокруг него линии.

Второе правило для рисования линий электрического поля включает в себя изображение линий другого типа, таких, которые пересекают первые силовые линии перпендикулярно . Такой тип линий именуется эквипотенциальными линиями , а при объемном представлении следует говорить об эквипотенциальных поверхностях. Этот тип линий образует замкнутые контуры и каждая точка на такой эквипотенциальной линии имеет одинаковое значение потенциала поля. Когда какая либо заряженная частица пересекает такие перпендикулярные силовым линиям линии (поверхности), то говорят о совершении зарядом работы. Если же заряд будет двигаться по эквипотенциальным линиям (поверхностям), то хотя он и движется, но работы при этом никакой не совершается. Заряженная частица, оказавшись в электрическом поле другого заряда начинает двигаться, но в статическом электричестве рассматриваются только неподвижные заряды. Движение зарядов называется электрическим током, при этом носителем заряда может совершатся работа.

Важно помнить, что силовые линии электрического поля не пересекаются, а линии другого типа - эквипотенциальные, образуют замкнутые контуры. В том месте, где имеет место пересечение линий двух типов, касательные к этим линиям взаимно перпендикулярны. Таким образом получается нечто вроде искривленной координатной сетки, или решетки, ячейки которой, а также точки пересечения линий разных типов характеризуют электрическое поле .

Пунктирные линии - эквипотенциальные. Линии со стрелками - силовые линии электрического поля

Электрическое поле состоящее из двух и более зарядов

Для уединенных отдельно взятых зарядов силовые линии электрического поля представляют собой радиальные лучи выходящие из зарядов и идущие в бесконечность. Какова будет конфигурация силовых линий для двух и более зарядов? Для выполнения такого узора необходимо помнить, что мы имеем дело с векторным полем, то есть с векторами напряженности электрического поля . Чтобы изобразить рисунок поля, нам необходимо выполнить сложение векторов напряженности от двух и более зарядов. Результирующие векторы будут представлять собой суммарное поле нескольких зарядов. Как в этом случае можно построить силовые линии? Важно помнить, что каждая точка на силовой линии - это единственная точка соприкосновения с вектором напряженности электрического поля. Это следует из определения касательной в геометрии. Если от начала каждого вектора построить перпендикуляр в виде длинных линий, тогда взаимное пересечение многих таких линий изобразит ту самую искомую силовую линию.

Для более точного математического алгебраического изображения силовых линий необходимо составить уравнения силовых линий, а вектора в этом случае будут представлять первые производные, линии первого порядка, которые и есть касательные. Такая задача порой является чрезвычайно сложной и требует компьютерных вычислений.

В первую очередь важно помнить, что электрическое поле от многих зарядов представлено суммой векторов напряженности от каждого источника заряда. Это основа для выполнения построения силовых линий для того чтобы визуализировать электрическое поле.

Каждый внесенный в электрическое поле заряд приводит к изменению, пусть даже незначительному, узора силовых линий. Такие изображения бывают порой очень привлекательными.

Силовые линии электрического поля как способ помочь уму увидеть реальность

Понятие электрического поля возникло когда ученые пытались объяснить дальнодействие, которое происходит между заряженными объектами. Представление об электрическом поле было впервые введено физиком 19-го века Майклом Фарадеем . Это был результат восприятия Майклом Фарадеем невидимой реальности в виде картины силовых линий характеризующих дальнодействие. Фарадей не стал размышлять в рамках одного заряда, а пошел дальше и расширил границы ума. Он предположил, что заряженный объект (или масса в случае с гравитацией) влияют на пространство и ввел понятие поля такого влияния. Рассматривая такие поля он смог объяснить поведение зарядов и тем самым раскрыл многие секреты электричества.

Г РАФИЧЕСКОЕ ИЗОБРАЖЕНИЕ ПОЛЕЙ

Электрическое поле можно описать, указав для каждой точки величину и направление вектора . Совокупность этих векторов полностью определит электрическое поле. Но если нарисовать вектора во многих точках поля, то они будут накладываться и пересекаться. Принято электрическое поле наглядно изображать с помощью сети линий, которые позволяют определить величину и направление напряженности поля в каждой точке (Рис.13).

Направление этих линий в каждой точке совпадает с направлением поля, т.е. касательная к таким линиям в каждой точке поля совпадает по направлению с вектором напряженности электрического поля в этой точке. Такие линии называются линиями напряженности электростатического поля или силовыми линиями электростатического поля .

Силовые линии электростатического поля начинаются на положительных электрических зарядах и кончаются на отрицательных электрических зарядах. Они могут уходить в бесконечность от положительного заряда или приходить из бесконечности к отрицательному заряду (линии 1 и 2 см. рис.13).

Силовые линии полезны не только тем, что наглядно демонстрируют направление поля, но и тем, что посредством их можно охарактеризовать величину поля в любой области пространства. Для этого плотность силовых линий численно должна быть равна величине напряженности электростатического поля.

Если поле изображено параллельными силовыми линиями, расположенными на одинаковых расстояниях друг от друга, то это значит, что вектор напряженности поля во всех точках имеет одинаковое направление. Модуль вектора напряженности поля во всех точках имеет одинаковые значения. Такое поле называют однородным электрическим полем. Выберем площадку перпендикулярную линиям напряженности столь малую, чтобы в области этой площадки поле было однородным (Рис.14).

Вектор – по определению перпендикулярен площадке, т.е. параллелен силовым линиям, а, следовательно, и . Длина вектора численно равна площади . Число силовых линий, пересекающих эту площадку, должно удовлетворять условию

Число силовых линий, проходящих через единицу площади поверхности, перпендикулярной силовым линиям, должно равняться модулю вектора напряженности.

Рассмотрим площадку , не перпендикулярную силовым линиям (на рис.14 показана штриховыми линиями). Чтобы ее пересекало такое же число силовых линий как и площадку , должно выполняться условие:, тогда . (4.2).

Мыслителям прошлого трудно было принять концепцию «действия на расстоянии». И правда, как может один заряд действовать на другой, если они не соприкасаются?
Даже Ньютону, применившему эту идею в теории всемирного тяготения, нелегко было свыкнуться с нею. Как мы видели, однако, эти трудности можно преодолеть с помощью понятия поля, которое ввел английский ученый Майкл Фарадей (1791-1867). Согласно Фарадею, от каждого заряда исходит электрическое поле, пронизывающее все пространство. Когда к одному заряду подносят другой, он испытывает действие силы, которая обусловлена электрическим полем первого заряда. Электрическое поле в точке, где находится второй заряд, влияет непосредственно на этот заряд, создавая действующую на него силу. Следует подчеркнуть, что поле не является некой разновидностью вещества; правильнее сказать, это - чрезвычайно полезная концепция.

Поле, создаваемое одним или несколькими зарядами, можно исследовать с помощью небольшого положительного пробного заряда, измеряя действующую на него силу. Под пробным зарядом мы понимаем достаточно малый заряд, собственное поле которого не меняет существенно распределения остальных зарядов, создающих исследуемое поле. Силы, действующие на малый пробный заряд q в окрестности уединенного положительного заряда Q , показаны на рис. 22.13. Сила в точке b меньше, чем в a, из-за большего расстояния между зарядами (закон Кулона); в точке с сила еще меньше. Во всех случаях сила направлена радиально от заряда Q .
По определению напряженность электрического поля , (или просто электрическое поле ) E в любой точке пространства равна отношению силы F , действующей на малый положительный пробный заряд q , к величине этого заряда:

Из вышеописанного определения следует, что направление напряженности электрического поля в любой точке пространства совпадает с направлением силы, действующей в этой точке на положительный пробный заряд. Напряженность электрического поля представляет собой силу, действующую на единицу заряда; она измеряется в ньютонах на кулон (Н/Кл).

Более строго Е определяется как предел отношения F/q при q , стремящемся к нулю.

Напряженность электрического поля Е определяется через отношение F/q , чтобы исключить зависимость поля Е от величины пробного заряда q . Иначе говоря, Е учитывает только те заряды, которые создают рассматриваемое в данной точке электрическое поле. Поскольку Е - векторная величина, электрическое поле является векторным полем.

Силовые линии

Коль скоро электрическое поле является векторным, его можно изображать в различных точках стрелками, как это сделано на рис. 22.13. Направления векторов Еа , Еb , Ес совпадали бы с направлениями показанных на этом рисунке сил и лишь длина их была бы уже иной в результате деления на q . Отношение длин векторов Еа , Еb , Ес сохранится прежним, так как мы делим на один и тот же заряд. Однако изображать электрическое поле таким образом неудобно, поскольку при большом числе точек весь рисунок будет испещрен стрелками. Поэтому пользуются другим способом изображения поля-методом силовых линий.

Для наглядного представления электрического поля его изображают семейством линий, указывающих направление напряженности поля в каждой точке пространства.
Эти так называемые силовые линии проводятся так, чтобы указывать направление силы, действующей в данном поле на положительный пробный заряд. Силовые линии точечного положительного заряда показаны на рис. 22.20, а, отрицательного - на рис. 22.20,6.
В первом случае линии радиально расходятся от заряда, во втором они радиально сходятся к заряду. Именно в таком направлении будут действовать силы на положительный пробный заряд. Конечно, силовые линии можно нанести и в промежутках между изображенными на рисунке. Но мы условимся наносить силовые линии с таким расчетом, чтобы число линий, исходящих от положительного заряда или заканчивающихся на отрицательном заряде, было пропорционально величине этого заряда.
Обратим внимание на то, что вблизи заряда, где сила максимальна, линии расположены более тесно. Это общее свойство силовых линий: чем теснее расположены силовые линии, тем сильнее электрическое поле в этой области. Вообще говоря, можно всегда изображать силовые линии таким образом, чтобы число линий, пересекающих единичную площадку, перпендикулярную направлению поля Е , было пропорционально напряженности электрического поля. Например, для уединенного точечного заряда (рис. 22.20) напряженность электрического поля убывает как 1/r 2 ; так же будет уменьшаться с расстоянием и число равномерно распределенных силовых линий, пересекающих единичную площадку: ведь общее число силовых линий остается постоянным, а площадь поверхности, через которую они проходят, растет как 4πr 2 (поверхность сферы радиусом г). Соответственно число силовых линий на единицу площади пропорционально 1/r 2 .

На рис. 22.21, а показаны силовые линии поля, создаваемого двумя зарядами противоположных знаков. Здесь силовые линии искривлены и направлены от положительного заряда к отрицательному. Поле в любой точке направлено по касательной к силовой линии, как показано стрелкой в точке Р.
На рис. 22.21,6 и в показаны силовые линии электрического поля двух положительных зарядов и поля между двумя параллельными противоположно заряженными пластинами. Заметим, что силовые линии поля между пластинами параллельны и расположены на равном расстоянии друг от друга, исключая область вблизи краев.

Таким образом, в центральной области напряженность электрического поля во всех точках одинакова, и мы можем написать:
Е = const (между близко расположенными параллельными пластинами).
Хотя вблизи краев это не так (силовые линии изгибаются), часто этим можно пренебречь, особенно если расстояние между пластинами мало по сравнению с их размерами. [Сравните этот результат со случаем уединенного точечного заряда, где поле изменяется обратно пропорционально квадрату расстояния].

Итак, силовые линии обладают следующими свойствами:

1. Силовые линии указывают направление напряженности электрического поля: в любой точке напряженность поля направлена по касательной к силовой линии.

2. Силовые линии проводятся так, чтобы напряженность электрического поля Е была пропорциональна числу линий, проходящих через единичную площадку, перпендикулярную линиям.

3. Силовые линии начинаются только на положительных зарядах и заканчиваются только на отрицательных зарядах; число линий, выходящих из заряда или входящих в него, пропорционально величине заряда.

Можно также сказать, что силовая линия электрического поля - это траектория, по которой следовал бы помещенный в поле малый пробный заряд. (Строго говоря, это верно лишь в том случае, если пробный заряд не обладает инерцией или движется медленно, например вследствие трения.)
Силовые линии никогда не пересекаются. (Если бы они пересекались, это означало бы, что в одной и той же точке напряженность электрического поля имеет два различных направления, что лишено смысла.)

Электрические поля и проводники

В статическом случае (т.е. когда заряды покоятся) электрическое поле внутри хорошего проводника отсутствует. Если бы в проводнике существовало электрическое поле, то на внутренние свободные электроны действовала бы сила, вследствие чего электроны пришли бы в движение и двигались до тех пор, пока не заняли бы такое положение, при котором, напряженность электрического поля, а стало быть, и действующая на них сила обратились бы в нуль. Из этого рассуждения вытекают любопытные следствия. В частности, если проводник обладает результирующим зарядом, то этот заряд распределяется по внешней поверхности проводника. Этот факт можно объяснить с иной точки зрения. Если, например, проводник заряжен отрицательно, то мы легко можем представить, что отрицательные заряды отталкивают друг друга и устремляются к поверхности проводника, чтобы расположиться как можно дальше друг от друга. Другое следствие состоит в следующем. Пусть положительный заряд Q помещен в центр полого изолированного проводника в форме сферической оболочки (рис. 22.22).
Поскольку внутри проводника электрического поля быть не может, силовые линии, идущие от положительного заряда, должны заканчиваться на отрицательных зарядах на внутренней поверхности металлической сферы. В результате на внутренней поверхности сферического проводника будет индуцирован соответствующий отрицательный заряд -Q , а равный по величине положительный заряд +Q распределится по внешней поверхности сферы (поскольку в целом оболочка нейтральна). Таким образом, хотя внутри проводника электрическое поле отсутствует, снаружи сферы существует электрическое поле (рис. 22.22), как если бы металлической сферы вовсе не было.

С этим связано также и то обстоятельство, что силовые линии электрического поля всегда перпендикулярны поверхности проводника. Действительно, если бы вектор напряженности электрического поля Е имел компоненту, параллельную поверхности проводника, то электроны под действием силы двигались бы до тех пор, пока не заняли положение, в котором на них не действует сила, т. е. пока вектор напряженности электрического поля не будет перпендикулярен поверхности.

Все сказанное относится только к проводникам. В изоляторах, у которых нет свободных электронов, может существовать электрическое поле и силовые линии не обязательно перпендикулярны поверхности.

Продолжение следует. Коротко о следующей публикации:

Замечания и предложения принимаются и приветствуются!

>>Физика: Силовые линии электрического поля. Напряженность поля заряженного шара

Электрическое поле не действует на органы чувств . Его мы не видим.
Однако мы можем получить некоторое представление о распределении поля, если нарисуем векторы напряженности поля в нескольких точках пространства (рис.14.9 , слева). Картина будет более наглядной, если нарисовать непрерывные линии, касательные к которым в каждой точке, через которую они проходят, совпадают по направлению с векторами напряженности. Эти линии называют силовыми линиями электрического поля или линиями напряженности (рис.14.9 , справа).

Направление силовых линий позволяет определить направление вектора напряженности в различных точках поля, а густота (число линий на единицу площади) силовых линий показывает, где напряженность поля больше. Так, на рисунках 14.10-14.13 густота силовых линий в точках А больше, чем в точках В . Очевидно, .
Не следует думать, что линии напряженности существуют в действительности вроде растянутых упругих нитей или шнуров, как предполагал сам Фарадей . Линии напряженности помогают лишь наглядно представить распределение поля в пространстве. Они не более реальны, чем меридианы и параллели на земном шаре.
Однако силовые линии можно сделать видимыми. Если продолговатые кристаллики изолятора (например, хинина) хорошо перемешать в вязкой жидкости (например, в касторовом масле) и поместить туда заряженные тела, то вблизи этих тел кристаллики выстроятся в цепочки вдоль линий напряженности.
На рисунках приведены примеры линий напряженности: положительно заряженного шарика (см. рис.14.10 ); двух разноименно заряженных шариков (см. рис.14.11 ); двух одноименно заряженных шариков (см. рис.14.12 ); двух пластин, заряды которых равны по модулю и противоположны по знаку (см. рис.14.13 ). Последний пример особенно На рисунке 14.13 видно, что в пространстве между пластинами ближе к середине силовые линии параллельны: электрическое поле здесь одинаково во всех точках.

Электрическое поле, напряженность которого одинакова во всех точках пространства, называется однородным . В ограниченной области пространства электрическое поле можно считать приближенно однородным, если напряженность поля внутри этой области меняется незначительно.
Однородное электрическое поле изображается параллельными линиями, расположенными на равных расстояниях друг от друга.
Силовые линии электрического поля не замкнуты, они начинаются на положительных зарядах и оканчиваются на отрицательных. Силовые линии непрерывны и не пересекаются, так как пересечение означало бы отсутствие определенного направления напряженности электрического поля в данной точке.
Поле заряженного шара. Рассмотрим теперь вопрос о электрическом поле заряженного проводящего шара радиусом R . Заряд q равномерно распределен по поверхности шара. Силовые линии электрического поля, как вытекает из соображений симметрии, направлены вдоль продолжений радиусов шара (рис.14.14, а ).

Обратите внимание! Силовые линии вне шара распределены в пространстве точно так же, как и силовые линии точечного заряда (рис.14.14, б ). Если совпадают картины силовых линий, то можно ожидать, что совпадают и напряженности полей. Поэтому на расстоянии r>R от центра шара напряженность поля определяется той же формулой (14.9), что и напряженность поля точечного заряда, помещенного в центре сферы:

Внутри проводящего шара (r) напряженность поля равна нулю . В этом мы скоро убедимся. На рисунке 14.14, в показана зависимость напряженности электрического поля заряженного проводящего шара от расстояния до его центра.
Картина силовых линий наглядно показывает, как направлена напряженность электрического поля в различных точках пространства. По изменению густоты линий можно судить об изменении модуля напряженности поля при переходе от точки к точке.

???
1. Что называют силовыми линиями электрического поля?
2. Во всех ли случаях траектория заряженной частицы совпадает с силовой линией?
3. Могут ли силовые линии пересекаться?
4. Чему равна напряженность поля заряженного проводящего шара?

Г.Я.Мякишев, Б.Б.Буховцев, Н.Н.Сотский, Физика 10 класс

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Если у вас есть исправления или предложения к данному уроку,

Электри́ческий заря́д - это физическая скалярная величина, определяющая способность тел быть источником электромагнитных полей и принимать участие в электромагнитном взаимодействии.

В замкнутой системе алгебраическая сумма зарядов всех частиц остается неизменной.

(... но, не числа заряженных частиц, т.к. существуют превращения элементарных частиц).

Замкнутая система

- система частиц, в которую не входят извне и не выходят наружу заряженные частицы.

Закон Кулона

- основной закон электростатики.

Сила взаимодействия двух точечных неподвижных заряженных тел в вакууме прямо пропорциональна

произведению модулей заряда и обратно пропорциональна квадрату расстояния между ними.

Когда тела считаются точечными? - если расстояние между ними во много раз больше размеров тел.

Если у двух тел есть электрические заряды, то они взаимодействуют по закону Кулона.

    Напряженность электрического поля. Принцип суперпозиции. Расчёт электростатического поля системы точеных зарядов на основе принципа суперпозиции.

Напряжённость электри́ческого по́ля - векторная физическая величина, характеризующая электрическое поле в данной точке и численно равная отношению силы действующей на неподвижный[ пробный заряд, помещенный в данную точку поля, к величине этого заряда :

При́нцип суперпози́ции - один из самых общих законов во многих разделах физики. В самой простой формулировке принцип суперпозиции гласит:

результат воздействия на частицу нескольких внешних сил есть векторная сумма воздействия этих сил.

Наиболее известен принцип суперпозиции в электростатике, в которой он утверждает, что напряженность электростатического поля, создаваемого в данной точке системой зарядов, есть сумма напряженностей полей отдельных зарядов.

4. Линии напряжонности (силовые линии) электрического поля. Поток вектора напряжонности. Густота силовых линий.

Электрическое поле изображают с помощью силовых линий.

Силовые линии указывают направление силы, действующей на положительный заряд в данной точке поля.

Свойства силовых линий электрического поля

    Силовые линии электрического поля имеют начало и конец. Они начинаются на положительных зарядах и заканчиваются на отрицательных.

    Силовые линии электрического поля всегда перпендикулярны поверхности проводника.

    Распределение силовых линий электрического поля определяет характер поля. Поле может быть радиальным (если силовые линии выходят из одной точки или сходятся в одной точке), однородным (если силовые линии параллельны) и неоднородным (если силовые линии не параллельны).

9.5. Поток вектора напряженности электрического поля. Теорема Гаусса

Как и для любого векторного поля важно рассмотреть свойства потока электрического поля. Поток электрического поля определяется традиционно.

Выделим малую площадку площадью ΔS , ориентация которой задается единичным вектором нормали (рис. 157).

В пределах малой площадки электрическое поле можно считать однородным , тогда поток вектора напряженности ΔФ E определяется как произведение площади площадки на нормальную составляющую вектора напряженности

где - скалярное произведение векторов и ; E n - нормальная к площадке компонента вектора напряженности.

В произвольном электростатическом поле поток вектора напряженности через произвольную поверхность, определяется следующим образом (рис. 158):

Поверхность разбивается на малые площадки ΔS (которые можно считать плоскими);

Определяется вектор напряженности на этой площадке (который в пределах площадки можно считать постоянным);

Вычисляется сумма потоков через все площадки, на которые разбита поверхность

Эта сумма называется потоком вектора напряженности электриче-ского поля через заданную поверхность .

Непрерывные линии, касательные к которым в каждой точке, через которую они проходят, совпадают с вектором напряженности, называются силовыми линиями электрического поля или линиями напряженности.

Густота линий больше там, где напряженность поля больше. Силовые линии электрического поля, созданного неподвижными зарядами не замкнуты: они начинаются на положительных зарядах и заканчиваются на отрицательных. Электрическое поле, напряженность которого одинакова во всех точках пространства, называется однородным. Густота линий больше вблизи заряженных тел, где напряженность больше. Силовые линии одного и того же поля не пересекаются.На любой заряд в электрическом поле действует сила. Если заряд под действием этой силы перемещается, то электрическое поле совершает работу. Работа сил по перемещению заряда в электростатическом поле не зависит от траектории движения заряда и определяется только положением начальной и конечной точек.Рассмотрим однородное электрическое поле, образованное плоскими пластинами, заряженными разноименно. Напряженность поля во всех точках одинакова. Пусть точечный заряд q перемещается из точки А в точку B вдоль кривой L. При перемещении заряда на небольшую величину D L работа равна произведению модуля силы на величину перемещения и на косинус угла между ними, или, что то же самое, произведению величины точечного заряда на напряженность поля и на проекцию вектора перемещения на направление вектора напряженности. Если подсчитать полную работу по перемещению заряда из точки А в точку B, то она независимо от формы кривой L, окажется равной работе по перемещению заряда q вдоль силовой линии в точку B 1 . Работа по перемещению из точки B 1 в точку B равна нулю, так как вектор силы и вектор перемещения перпендикулярны.

5. Теорема Гаусса для электрического поля в вакууме

Общая формулировка : Поток вектора напряжённости электрического поля через любую произвольно выбранную замкнутую поверхность пропорционален заключённому внутри этой поверхности электрическому заряду .

СГС

СИ

Данное выражение представляет собой теорему Гаусса в интегральной форме.

    Замечание : поток вектора напряжённости через поверхность не зависит от распределения заряда (расположения зарядов) внутри поверхности.

В дифференциальной форме теорема Гаусса выражается следующим образом:

СГС

СИ

Здесь - объёмная плотность заряда (в случае присутствия среды - суммарная плотность свободных и связанных зарядов), а - оператор набла .

    Теорема Гаусса может быть доказана как теорема в электростатике исходя из закона Кулона (см. ниже ). Формула однако также верна в электродинамике, хотя в ней она чаще всего не выступает в качестве доказываемой теоремы, а выступает в качестве постулируемого уравнения (в этом смысле и контексте ее логичнее называть законом Гаусса .

6. Применение теоремы Гаусса к расчету электростатического поля равномерно заряженной длинной нити (цилиндра)

Поле равномерно заряженного бесконечного цилиндра (нити) . Бесконечный цилиндр радиуса R (рис. 6) равномерно заряжен слинейной плотностью τ (τ = –dQ/dt заряд, который приходится на единицу длины). Из соображений симметрии мы видим, что линии напряженности будут направлены по радиусам круговых сечений цилиндра с одинаковой густотой во все стороны относительно оси цилиндра. Мысленно построим в качестве замкнутой поверхности коаксиальный цилиндр радиуса r и высотой l . Поток вектора Е сквозь торцы коаксиального цилиндра равен нулю (торцы и линии напряженности параллельны), а сквозь боковую поверхность равен 2πrl Е. Используя теорему Гаусса, при r>R 2πrl Е = τl /ε 0 , откуда (5) Если r

7. Применение теоремы Гаусса к расчету электростатического поля равномерно заряженной плоскости

Поле равномерно заряженной бесконечной плоскости . Бесконечная плоскость (рис. 1) заряжена с постоянной поверхностной плотностью +σ (σ = dQ/dS - заряд, который приходится на единицу поверхности). Линии напряженности перпендикулярны данной плоскости и направлены от нее в каждую из сторон. Возьмем в качестве замкнутой поверхности цилиндр, основания которого параллельны заряженной плоскости, а ось перпендикулярна ей. Так как образующие цилиндра параллельны линиям напряженности поля (соsα=0), то поток вектора напряженности сквозь боковую поверхность цилиндра равен нулю, а полный поток сквозь цилиндр равен сумме потоков сквозь его основания (площади оснований равны и для основания Е n совпадает с Е), т. е. равен 2ES. Заряд, который заключен внутри построенной цилиндрической поверхности, равен σS. Согласно теореме Гаусса, 2ES=σS/ε 0 , откуда (1) Из формулы (1) следует, что Е не зависит от длины цилиндра, т. е. напряженность поля на любых расстояниях равна по модулю, иными словами, поле равномерно заряженной плоскости однородно .

8. Применение теоремы Гаусса к расчету электростатического поля равномерно заряженной сферы и объемно заряженного шара.

Поле равномерно заряженной сферической поверхности . Сферическая поверхность радиуса R с общим зарядом Q заряжена равномерно с поверхностной плотностью +σ. Т.к. заряд распределен равномернопо поверхности то поле, которое создавается им, обладает сферической симметрией. Значит линии напряженности направлены радиально (рис. 3). Проведем мысленно сферу радиуса r, которая имеет общий центр с заряженной сферой. Если r>R,ro внутрь поверхности попадает весь заряд Q, который создает рассматриваемое поле, и, по теореме Гаусса, 4πr 2 E = Q/ε 0 , откуда (3) При r>R поле убывает с расстоянием r по такому же закону, как у точечного заряда. График зависимости Е от r приведен на рис. 4. Если r"

Поле объемно заряженного шара . Шар радиуса R с общим зарядом Q заряжен равномерно с объемной плотностью ρ (ρ = dQ/dV – заряд, который приходится на единицу объема). Учитывая соображения симметрии, аналогичные п.3, можно доказать, что для напряженности поля вне шара получится тот же результат, что и в случае (3). Внутри же шара напряженность поля будет иная. Сфера радиуса r"

9. Работа сил электрического поля при перемещении заряда. Теорема о циркуляции напряженности электрического поля.

Элементарная работа, совершаемая силой F при перемещении точечного электрического заряда из одной точки электростатического поля в другую на отрезке пути , по определению равна

где - угол между вектором силы F и направлением движения . Если работа совершается внешними силами, то dA0. Интегрируя последнее выражение, получим, что работа против сил поля при перемещении пробного заряда из точки “а” в точку “b” будет равна

где - кулоновская сила, действующая на пробный заряд в каждой точке поля с напряженностью Е. Тогда работа

Пусть заряд перемещается в поле заряда q из точки “а”, удалённой от q на расстоянии в точку “b”, удаленную от q на расстоянии (рис 1.12).

Как видно из рисунка тогда получим

Как было сказано выше, работа сил электростатического поля, совершаемая против внешних сил, равна по величине и противоположна по знаку работе внешних сил, следовательно

Теорема о циркуляции электрического поля.

Напряженность и потенциал – это две характеристики одного и того же объекта – электрического поля, поэтому между ними должна существовать функциональная связь. Действительно, работа сил поля по перемещению заряда q из одной точки пространства в другую может быть представлена двояким образом:

Откуда следует, что

Это и есть искомая связь между напряженностью и потенциалом электрического поля в дифференциальном виде.

- вектор, направленный из точки с меньшим потенциалом в точку с большим потенциалом (рис.2.11).

, .

Рис.2.11 . Векторы и gradφ . .

Из свойства потенциальности электростатического поля следует, что работа сил поля по замкнутому контуру (φ 1 = φ 2) равна нулю:

поэтому можем написать

Последнее равенство отражает суть второй основной теоремы электростатики – теоремы о циркуляцииэлектрического поля , согласно которой циркуляция поля вдоль произвольного замкнутого контура равна нулю. Эта теорема является прямым следствием потенциальности электростатического поля.

10. Потенциал электрического поля. Связь между потенциалом и напряжонностью.

Электростатический потенциа́л (см. также кулоновский потенциал ) - скалярная энергетическая характеристикаэлектростатического поля , характеризующая потенциальную энергию поля, которой обладает единичный заряд , помещённый в данную точку поля. Единицей измерения потенциала является, таким образом, единица измерения работы , деленная на единицу измерения заряда (для любой системы единиц; подробнее о единицах измерения - см. ниже ).

Электростатический потенциал - специальный термин для возможной замены общего термина электродинамики скалярный потенциал в частном случае электростатики (исторически электростатический потенциал появился первым, а скалярный потенциал электродинамики - его обобщение). Употребление термина электростатический потенциал определяет собой наличие именно электростатического контекста. Если такой контекст уже очевиден, часто говорят просто о потенциале без уточняющих прилагательных.

Электростатический потенциал равен отношению потенциальной энергии взаимодействия заряда с полем к величине этого заряда:

Напряжённость электростатического поля и потенциал связаны соотношением

или обратно :

Здесь - оператор набла , то есть в правой части равенства стоит минус градиент потенциала - вектор с компонентами, равными частным производным от потенциала по соответствующим (прямоугольным) декартовым координатам, взятый с противоположным знаком.

Воспользовавшись этим соотношением и теоремой Гаусса для напряжённости поля , легко увидеть, что электростатический потенциал удовлетворяетуравнению Пуассона . В единицах системы СИ :

где - электростатический потенциал (в вольтах ), - объёмная плотность заряда кулонах на кубический метр), а - вакуума (в фарадах на метр).

11. Энергия системы неподвижных точечных электрических зарядов.

Энергия системы неподвижных точечных зарядов . Как мы уже знаем, электростатические силы взаимодействия консервативны; значит, система зарядов обладает потенциальной энергией. Будем искать потенциальную энергию системы двух неподвижных точечных зарядов Q 1 и Q 2 , которые находятся на расстоянии r друг от друга. Каждый из этих зарядов в поле другого обладает потенциальной энергией (используем формулу потенциала уединенного заряда): где φ 12 и φ 21 - соответственно потенциалы, которые создаются зарядом Q 2 в точке нахождения заряда Q 1 и зарядом Q 1 в точке нахождения заряда Q 2 . Согласно, и поэтому W 1 = W 2 = W и Добавляя к нашей системе из двух зарядов последовательно заряды Q 3 , Q 4 , ... , можно доказать, что в случае n неподвижных зарядов энергия взаимодействия системы точечных зарядов равна (1) где φ i - потенциал, который создается в точке, где находится заряд Q i , всеми зарядами, кроме i-го.

12. Диполь в электрическом поле. Полярные и неполярные молекулы. Поляризация диэлектриков. Поляризованность. Сегнетоэлектрики.

Если поместить диэлектрик во внешнее электрическое поле, то он поляризуется, т. е. получит неравный нулю дипольный момент pV=∑piгдеpi- дипольный момент одной молекулы. Чтобы произвести количественное описание поляризации диэлектрика вводят векторную величину - поляризованность, которая определяется как дипольный момент единицы объема диэлектрика:

Из опыта известно, что для большого класса диэлектриков (за исключением сегнетоэлектриков, см. далее) поляризованность Р зависит от напряженности поля Е линейно. Если диэлектрик изотропный и Е численно не слишком велико, то

Сегнетоэлектрики - диэлектрики, которые обладают в определенном интервале температур спонтанной (самопроизвольной) поляризованностью, т. е. поляризованностью в условиях отсутствия внешнего электрического поля. К сегнетоэлектрикам относятся, например, подробно изученные И. В. Курчатовым (1903-1960) и П. П. Кобеко (1897-1954) сегнетова соль NaKC 4 H 4 O 6 4Н 2 O (от нее и было получено данное название) и титанат бария ВаТiO 3 .

Поляризация диэлектриков - явление, связанное с ограниченным смещением связанных зарядов в диэлектрике или поворотом электрических диполей , обычно под воздействием внешнего электрического поля , иногда под действием других внешних сил или спонтанно.

Поляризацию диэлектриков характеризует вектор электрической поляризации . Физический смысл вектора электрической поляризации - это дипольный момент , отнесенный к единице объема диэлектрика. Иногда вектор поляризации коротко называют просто поляризацией.

Электрический диполь - идеализированная электронейтральная система, состоящая из точечных и равных по абсолютной величине положительного и отрицательного электрических зарядов .

Другими словами, электрический диполь представляет собой совокупность двух равных по абсолютной величине разноимённых точечных зарядов, находящихся на некотором расстоянии друг от друга

Произведение вектора проведённого от отрицательного заряда к положительному, на абсолютную величину зарядов называется дипольным моментом:

Во внешнем электрическом поле на электрический диполь действует момент сил который стремится повернуть его так, чтобы дипольный момент развернулся вдоль направления поля.

Потенциальная энергия электрического диполя в (постоянном) электрическом поле равна (В случае неоднородного поля это означает зависимость не только от момента диполя - его величины и направления, но и от места, точки нахождения диполя).

Вдали от электрического диполя напряжённость его электрического поля убывает с расстоянием как то есть быстрее, чем у точечного заряда ().

Любая в целом электронейтральная система, содержащая электрические заряды, в некотором приближении (то есть собственно в дипольном приближении ) может рассматриваться как электрический диполь с моментом где - заряд -го элемента, - его радиус-вектор. При этом дипольное приближение будет корректным, если расстояние, на котором изучается электрическое поле системы, велико по сравнению с её характерными размерами.

Поля́рные вещества́ в химии - вещества , молекулы которых обладают электрическим дипольным моментом . Для полярных веществ, в сравнении с неполярными, характерны высокая диэлектрическая проницаемость (более 10 в жидкой фазе), повышенные температура кипения и температура плавления .

Дипольный момент обычно возникает вследствие разной электроотрицательности составляющих молекулу атомов , из-за чегосвязи в молекуле приобретают полярность . Однако, для приобретения дипольного момента требуется не только полярность связей, но и соответственное их расположение в пространстве . Молекулы, имеющие форму, подобную молекулам метана либо двуокиси углерода , являются неполярными.

Полярные растворители наиболее охотно растворяют полярные вещества, а также обладают способностью сольватировать ионы. Примерами полярного растворителя являются вода , спирты и другие вещества.

13. Напряженность электрического поля в диэлектрики. Электрическое смещение. Теорема Гаусса для поля в диэлектрики.

Напряженность электростатического поля, согласно (88.5), зависит от свойств среды: в однородной изотропной среде напряженность поля Е обратно пропорциональна . Вектор напряженности Е , переходя через границу диэлектриков, претерпевает скачко­образное изменение, создавая тем самым неудобства при расчетах электростатических полей. Поэтому оказалось необходимым помимо вектора напряженности характеризо­вать поле ещевектором электрического смещения, который для электрически изотроп­ной среды, по определению, равен

Используя формулы (88.6) и (88.2), вектор электрического смещения можно выразить как

Единица электрического смещения - кулон на метр в квадрате (Кл/м 2).

Рассмотрим, с чем можно связать вектор электрического смещения. Связанные заряды появляются в диэлектрике при наличии внешнего электростатического поля, создаваемого системой свободных электрических зарядов, т. е. в диэлектрике на электростатическое поле свободных зарядов накладывается дополнительное поле свя­занных зарядов.Результирующее поле в диэлектрике описывается вектором напряжен­ности Е , и потому он зависит от свойств диэлектрика. Вектором D описывается электростатическое поле, создаваемое свободными зарядами. Связанные заряды, воз­никающие в диэлектрике, могут вызвать, однако, перераспределение свободных заря­дов, создающих поле. Поэтому вектор D характеризует электростатическое поле, создаваемое свободными зарядами (т. е. в вакууме), но при таком их распределении в пространстве, какое имеется при наличии диэлектрика.

Аналогично, как и поле Е , поле D изображается с помощьюлиний электрического смещения, направление и густота которых определяются точно так же, как и для линий напряженности (см. §79).

Линии вектора Е могут начинаться и заканчиваться на любых зарядах - свободных и связанных, в то время как линии вектора D - только на свободных зарядах. Через области поля, где находятся связанные заряды, линии вектора D проходят не прерываясь.

Для произвольной замкнутой поверхности S поток вектора D сквозь эту поверх­ность

где D n - проекция вектора D на нормаль n к площадке dS .

Теорема Гаусса дляэлектростатического поля в диэлектрике:

(89.3)

т. е. поток вектора смещения электростатического поля в диэлектрике сквозь произ­вольную замкнутую поверхность равен алгебраической сумме заключенных внутри этой поверхности свободных электрических зарядов. В такой форме теорема Гаусса справедлива для электростатического поля как для однородной и изотропной, так и для неоднородной и анизотропной сред.

Для вакуума D n = 0 E n ( =1), тогда поток вектора напряженности Е сквозь произ­вольную замкнутую поверхность (ср. с (81.2)) равен

Так как источниками поля Е в среде являются как свободные, так и связанные заряды, то теорему Гаусса (81.2) для поля Е в самом общем виде можно записать как

где - соответственно алгебраические суммы свободных и связанных зарядов, охватываемых замкнутой поверхностью S . Однако эта формула неприемлема для описания поля Е в диэлектрике, так как она выражает свойства неизвестного поля Е через связанные заряды, которые, в свою очередь, определяются им же. Это еще раз доказывает целесообразность введения вектора электрического смещения.

. Напряженность электрического поля в диэлектрике.

В соответствии с принципом суперпозиции электрическое поле в диэлектрике векторно складывается из внешнего поля и поля поляризационных зарядов (рис.3.11).

или по абсолютной величине

Мы видим, что величина напряженности поля в диэлектрике меньше, чем вакууме. Другими словами, любой диэлектрик ослабляет внешнее электрическое поле.

Рис.3.11 . Электрическое поле в диэлектрике.

Индукция электрического поля , где , , то есть . С другой стороны, , откуда находим, что ε 0 Е 0 = ε 0 εЕ и, следовательно, напряженность электрического поля в изотропном диэлектрике есть:

Эта формула раскрывает физический смысл диэлектрической проницаемости и показывает, что напряженность электрического поля в диэлектрике в раз меньше , чем в вакууме. Отсюда следует простое правило: чтобы написать формулы электростатики в диэлектрике, надо в соответствующих формулах электростатики вакуума рядом с приписать .

В частности, закон Кулона в скалярной форме запишется в виде:

14. Электрическая емкость. Конденсаторы (плоский, сферический, цилиндрический), их емкости.

Конденсатор состоит из двух проводников (обкладок), которые разделены диэлектриком. На емкость конденсатора не должны влиять окружающие тела, поэтому проводникам придают такую форму, чтобы поле, которое создавается накапливаемыми зарядами, было сосредоточено в узком зазоре между обкладками конденсатора. Этому условию удовлетворяют: 1) две плоские пластины; 2) две концентрические сферы; 3) два коаксиальных цилиндра. Поэтому в зависимости от формы обкладок конденсаторы делятся на плоские, сферические и цилиндрические .

Так как поле сосредоточено внутри конденсатора, то линии напряженности начинаются на одной обкладке и кончаются на другой, поэтому свободные заряды, которые возникают на разных обкладках, равны по модулю и противоположны по знаку. Под емкостью конденсатора понимается физическая величина, равная отношению заряда Q, накопленного в конденсаторе, к разности потенциалов (φ 1 - φ 2) между его обкладками: (1) Найдем емкость плоского конденсатора, который состоит из двух параллельных металлических пластин площадью S каждая, расположенных на расстоянии d друг от друга и имеющих заряды +Q и –Q. Если считать, что расстояние между пластинами мало по сравнению с их линейными размерами, то краевыми эффектами на пластинах можно пренебречь и поле между обкладками считать однородным. Его можно найти используя формулу потенциала поля двух бесконечных параллельных разноименно заряженных плоскостей φ 1 -φ 2 =σd/ε 0 . Учитывая наличие диэлектрика между обкладками: (2) где ε - диэлектрическая проницаемость. Тогда из формулы (1), заменяя Q=σS, с учетом (2) найдем выражение для емкости плоского конденсатора: (3) Для определения емкости цилиндрического конденсатора, который состоит из двух полых коаксиальных цилиндров с радиусами r 1 и r 2 (r 2 > r 1), один вставлен в другой, опять пренебрегая краевыми эффектами, считаем поле радиально-симметричным и действующим только между цилиндрическими обкладками. Разность потенциалов между обкладками считаем по формуле для разности потенциалов поля равномерно заряженного бесконечного цилиндра с линейной плотностью τ =Q/l (l -длина обкладок). При наличии диэлектрика между обкладками разность потенциалов (4) Подставив (4) в (1), найдем выражение для емкости цилиндрического конденсатора: (5) Чтобы найти емкость сферического конденсатора, который состоит из двух концентрических обкладок, разделенных сферическим слоем диэлектрика, используем формулу для разности потенциалов между двумя точками, лежащими на расстояниях r 1 и r 2 (r 2 > r 1) от центра заряженной сферической поверхности. При наличии диэлектрика между обкладками разность потенциалов (6) Подставив (6) в (1), получим

Электрическая ёмкость - характеристика проводника, мера его способности накапливать электрический заряд . В теории электрических цепей ёмкостью называют взаимную ёмкость между двумя проводниками; параметр ёмкостного элемента электрической схемы, представленного в виде двухполюсника. Такая ёмкость определяется как отношение величины электрического заряда к разности потенциалов между этими проводниками.

В системе СИ ёмкость измеряется в фарадах . В системе СГС в сантиметрах .

Для одиночного проводника ёмкость равна отношению заряда проводника к его потенциалу в предположении, что все другие проводники бесконечно удалены и что потенциал бесконечно удалённой точки принят равным нулю. В математической форме данное определение имеет вид

Где - заряд , - потенциал проводника.

Ёмкость определяется геометрическими размерами и формой проводника и электрическими свойствами окружающей среды (её диэлектрической проницаемостью) и не зависит от материала проводника. К примеру, ёмкость проводящего шара радиуса R равна (в системе СИ):

где ε 0 - электрическая постоянная , ε - .

Понятие ёмкости также относится к системе проводников, в частности, к системе двух проводников, разделённых диэлектриком иливакуумом , - к конденсатору . В этом случае взаимная ёмкость этих проводников (обкладок конденсатора) будет равна отношению заряда, накопленного конденсатором, к разности потенциалов между обкладками. Для плоского конденсатора ёмкость равна:

где S - площадь одной обкладки (подразумевается, что они равны), d - расстояние между обкладками, ε - относительная диэлектрическая проницаемость среды между обкладками, ε 0 = 8.854·10 −12 Ф/м - электрическая постоянная .

Конденса́тор (от лат. condensare - «уплотнять», «сгущать») - двухполюсник с определённым значением ёмкости и малой омической проводимостью ; устройство для накопления заряда и энергии электрического поля. Конденсатор является пассивным электронным компонентом. Обычно состоит из двух электродов в форме пластин (называемых обкладками ), разделённых диэлектриком , толщина которого мала по сравнению с размерами обкладок.

15. Соединение конденсаторов (параллельное и последовательное)

Помимо показанного на рис. 60 и 61, а также на рис. 62, а параллельного соединения конденсаторов, при котором соединены между собой все положительные и все отрицательные обкладки, иногда соединяют конденсаторы последовательно, т. е. так, чтобы отрицательная обкладка Рис. 62. Соединение конденсаторов: а) параллельное; б) последовательное первого конденсатора была соединена с положительной обкладкой второго, отрицательная обкладка второго - с положительной обкладкой третьего и т. д. (рис. 62, б). В случае параллельного соединения все конденсаторы заряжаются до одной и той же разности потенциалов U, но заряды на них могут быть различными. Если емкости их равны С1, С2,..., Сn, то соответствующие заряды будут Общий заряд на всех конденсаторах и, следовательно, емкость всей системы конденсаторов (35.1) Итак, емкость группы параллельно соединенных конденсаторов равна сумме емкостей отдельных конденсаторов. В случае последовательно соединенных конденсаторов (рис. 62, б) одинаковы заряды на всех конденсаторах. Действительно, если мы поместим, например, заряд +q на левую обкладку первого конденсатора, то вследствие индукции на правой его обкладке возникнет заряд -q, а на левой обкладке второго конденсатора - заряд +q. Наличие этого заряда на левой обкладке второго конденсатора опять-таки вследствие индукции создает на правой его обкладке заряд -q, а на левой обкладке третьего конденсатора - заряд +q и т. д. Таким образом, заряд каждого из последовательно соединенных конденсаторов равен q. Напряжение же на каждом из этих конденсаторов определяется емкостью соответствующего конденсатора: где Сi - емкость одного конденсатора. Суммарное напряжение между крайними (свободными) обкладками всей группы конденсаторов Следовательно, емкость всей системы конденсаторов определяется выражением (35.2) Из этой формулы видно, что емкость группы последовательно соединенных конденсаторов всегда меньше емкости каждого из этих конденсаторов в отдельности.

16. Энергия электрического поля и её объёмная плотность.

Энергия электрического поля. Энергию заряженного конденсатора можно выразить через величины, характеризующие электрическое поле в зазоре между обкладками. Сделаем это на примере плоского конденсатора. Подстановка выражения для емкости в формулу для энергии конденсатора дает

Частное U / d равно напряженности поля в зазоре; произведение S ·d представляет собой объем V , занимаемый полем. Следовательно,

Если поле однородно (что имеет место в плоском конденсаторе при расстоянии d много меньшем, чем линейные размеры обкладок), то заключенная в нем энергия распределяется в пространстве с постоянной плотностью w . Тогда объемная плотность энергии электрического поля равна

C учетом соотношения можно записать

В изотропном диэлектрике направления векторов D и E совпадают и Подставим выражение , получим

Первое слагаемое в этом выражении совпадает с плотностью энергии поля в вакууме. Второе слагаемое представляет собой энергию, затрачиваемую на поляризацию диэлектрика. Покажем это на примере неполярного диэлектрика. Поляризация неполярного диэлектрика заключается в том, что заряды, входящие в состав молекул, смещаются из своих положений под действием электрического поляЕ . В расчете на единицу объема диэлектрика работа, затрачиваемая на смещение зарядов q i на величину dr i , составляет

Выражение в скобках есть дипольный момент единицы объема или поляризованность диэлектрика Р . Следовательно, . Вектор P связан с вектором E соотношением . Подставив это выражение в формулу для работы, получим

Проведя интегрирование, определим работу, затрачиваемую на поляризацию единицы объема диэлектрика

Зная плотность энергии поля в каждой точке, можно найти энергию поля, заключенного в любом объеме V . Для этого нужно вычислить интеграл:

17. Постоянный электрический ток, его характеристики и условия существования. Закон Ома для однородного участка цепи (интегральная и дифференциальная формы)

Для существования постоянного электрического тока необходимо наличие свободных заряженных частиц и наличие источника тока. в котором осуществляется преобразование какого-либо вида энергии в энергию электрического поля.

Источник тока - устройство, в котором осуществляется преобразование какого-либо вида энергии в энергию электрического поля. В источнике тока на заряженные частицы в замкнутой цепи действуют сторонние силы. Причины возникновения сторонних сил в различных источниках тока различны. Например в аккумуляторах и гальванических элементах сторонние силы возникают благодаря протеканию химических реакций, в генераторах электростанций они возникают при движении проводника в магнитном поле, в фотоэлементах - при действия света на электроны в металлах и полупроводниках.

Электродвижущей силой источника тока называют отношение работы сторонних сил к величине положительного заряда, переносимого от отрицательного полюса источника тока к положительному.